Abstract

This paper proposes a learning reference governor (LRG) approach to enforce state and control constraints in systems for which an accurate model is unavailable. This approach enables the reference governor to gradually improve command tracking performance through learning while enforcing the constraints during learning and after learning is completed. The learning can be performed either on a black-box type model of the system or directly on the hardware. After introducing the LRG algorithm and outlining its theoretical properties, this paper investigates LRG application to fuel truck (tank truck) rollover avoidance. Through simulations based on a fuel truck model that accounts for liquid fuel sloshing effects, we show that the proposed LRG can effectively protect fuel trucks from rollover accidents under various operating conditions.

References

1.
Garone
,
E.
,
Cairano
,
S. D.
, and
Kolmanovsky
,
I.
,
2017
, “
Reference and Command Governors for Systems with Constraints: A Survey on Theory and Applications
,”
Automatica
,
75
, pp.
306
328
.
2.
Liu
,
K.
,
Li
,
N.
,
Rizzo
,
D.
,
Garone
,
E.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2019
,
Model-Free Learning to Avoid Constraint Violations: An Explicit Reference Governor Approach
.
American Control Conference
, pp.
934
940
.
3.
Treichel
,
T.
,
Hughes
,
J.
,
Barkan
,
C.
,
Sims
,
R.
,
Phillips
,
E.
, and
Saat
,
M.
,
2006
,
Safety Performance of Tank Cars in Accidents: Probabilities of Lading Loss
.
RSI-AAR Tank Car Safety Research and Test Project Report
, pp.
05
02
.
4.
Salem
,
M. I.
,
Mucino
,
V. H.
,
Gautam
,
M.
, and
Aquaro
,
M.
,
1999
, “
Review of Parameters Affecting Stability of Partially Filled Heavy-Duty Tankers
,”
SAE Trans.
, pp.
461
476
.
5.
Kang
,
X.
,
Rakheja
,
S.
, and
Stiharu
,
I.
,
2002
, “
Cargo Load Shift and Its Influence on Tank Vehicle Dynamics Under Braking and Turning
,”
Int. J. Heavy Vehicle Syst.
,
9
(
3
), pp.
173
203
.
6.
Bencatel
,
R.
,
Tian
,
R.
,
Girard
,
A. R.
, and
Kolmanovsky
,
I.
,
2018
, “
Reference Governor Strategies for Vehicle Rollover Avoidance
,”
IEEE Trans. Control Syst. Technol.
,
26
(
6
), pp.
1954
1969
.
7.
Tian
,
R.
,
Bencatel
,
R.
,
Girard
,
A.
, and
Kolmanovsky
,
I.
,
2017
, Coordinated Control of Active Steering and Differential Braking Using Extended Command Governor for Rollover Avoidance. Dynamic Systems and Control Conference, vol. 58271, p. V001T45A001, American Society of Mechanical Engineers.
8.
Abramson
,
H. N.
,
Chu
,
W.-h.
, and
Ransleben
,
G. E.
,
1961
, “
Representation of Fuel Sloshing in Cylindrical Tanks by An Equivalent Mechanical Model
,”
Am. Rocket Soc. J.
,
31
(
12
), pp.
1697
1705
.
9.
Sidi
,
M. J.
,
1997
,
Spacecraft Dynamics and Control: A Practical Engineering Approach
, Vol. 7,
Cambridge University Press
,
Cambridge, UK
.
10.
Xue-lian
,
Z.
,
Xian-sheng
,
L.
, and
Yuan-yuan
,
R.
,
2012
, “
Equivalent Mechanical Model for Lateral Liquid Sloshing in Partially Filled Tank Vehicles
,”
Math. Probl. Eng.
,
2012
(
0
), pp.
0
0
.
11.
Camacho
,
E. F.
, and
Alba
,
C. B.
,
2013
,
Model Predictive Control
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
12.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
,
Cambridge, UK
.
13.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M.
,
2017
,
Model Predictive Control: Theory, Computation, and Design
, Vol.
2
.
Nob Hill Publishing Madison
,
WI
.
14.
Aswani
,
A.
,
Gonzalez
,
H.
,
Sastry
,
S. S.
, and
Tomlin
,
C.
,
2013
, “
Provably Safe and Robust Learning-based Model Predictive Control
,”
Automatica
,
49
(
5
), pp.
1216
1226
.
15.
Ostafew
,
C. J.
,
Schoellig
,
A. P.
, and
Barfoot
,
T. D.
,
2016
, “
Robust Constrained Learning-based NMPC Enabling Reliable Mobile Robot Path Tracking
,”
Int. J. Rob. Res.
,
35
(
13
), pp.
1547
1563
.
16.
Kocijan
,
J.
,
Murray-Smith
,
R.
,
Rasmussen
,
C. E.
, and
Girard
,
A.
,
2004
,
Gaussian Process Model Based Predictive Control
.
American Control Conference
, pp.
2214
2219
.
17.
Koller
,
T.
,
Berkenkamp
,
F.
,
Turchetta
,
M.
, and
Krause
,
A.
,
2018
,
Learning-Based Model Predictive Control for Safe Exploration
.
Conference on Decision and Control
, pp.
6059
6066
.
18.
Guay
,
M.
,
Adetola
,
V.
, and
DeHaan
,
D.
,
2015
,
Robust and Adaptive Model Predictive Control of Nonlinear Systems
,
Institution of Engineering and Technology
,
London, UK
.
19.
Nguyen
,
T. W.
,
Islam
,
S. A. U.
,
Bruce
,
A. L.
,
Goel
,
A.
,
Bernstein
,
D. S.
, and
Kolmanovsky
,
I. V.
,
2020
,
Output-Feedback RLS-Based Model Predictive Control
. In
2020 American Control Conference (ACC)
, pp.
2395
2400
.
20.
Taylor
,
A. J.
, and
Ames
,
A. D.
,
2020
,
Adaptive Safety with Control Barrier Functions
.
2020 American Control Conference (ACC)
, pp.
1399
1405
, IEEE.
21.
Taylor
,
A. J.
,
Dorobantu
,
V. D.
,
Le
,
H. M.
,
Yue
,
Y.
, and
Ames
,
A. D.
,
2019
,
Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems
. arXiv preprint arXiv:1903.01577.
22.
Berkenkamp
,
F.
,
Turchetta
,
M.
,
Schoellig
,
A.
, and
Krause
,
A.
,
2017
, “
Safe Model-Based Reinforcement Learning with Stability Guarantees
,”
Advances in Neural Information Processing Systems
, pp.
908
918
.
23.
Cheng
,
R.
,
Orosz
,
G.
,
Murray
,
R. M.
, and
Burdick
,
J. W.
,
2019
,
End-To-End Safe Reinforcement Learning Through Barrier Functions for Safety-Critical Continuous Control Tasks
. arXiv preprint arXiv:1903.08792.
24.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.
25.
Norrlof
,
M.
,
2002
, “
An Adaptive Iterative Learning Control Algorithm with Experiments on An Industrial Robot
,”
IEEE. Trans. Rob. Autom.
,
18
(
2
), pp.
245
251
.
26.
Kawamura
,
S.
, and
Sakagami
,
N.
,
2002
,
Analysis on Dynamics of Underwater Robot Manipulators Based on Iterative Learning Control and Time-Scale Transformation
.
International Conference on Robotics and Automation
, vol.
2
, pp.
1088
1094
.
27.
Liu
,
K.
,
Li
,
N.
,
Kolmanovsky
,
I.
,
Rizzo
,
D.
, and
Girard
,
A.
,
2020
,
Model-Free Learning for Safety-Critical Control Systems: A Reference Governor Approach
.
2020 American Control Conference (ACC)
, pp.
943
949
, IEEE.
28.
Li
,
X.-s.
,
Zheng
,
X.-l.
,
Ren
,
Y.-y.
,
Wang
,
Y.-n.
, and
Cheng
,
Z.-q.
,
2013
, “
Study on Driving Stability of Tank Trucks Based on Equivalent Trammel Pendulum for Liquid Sloshing
,”
Discrete Dyn. Nat. Soc.
,
2013
, pp.
1
15
.
29.
Liu
,
K.
,
Li
,
N.
,
Kolmanovsky
,
I.
,
Rizzo
,
D.
, and
Girard
,
A.
,
2021
, “
Tanker Truck Rollover Avoidance Using Learning Reference Governor
,”
SAE Int. J. Adv. Curr. Practices Mobility
,
3
(
2021-01-0256
), pp.
1385
1394
.
30.
Li
,
N.
,
Kolmanovsky
,
I. V.
, and
Girard
,
A.
,
2020
, “
A Reference Governor for Nonlinear Systems with Disturbance Inputs Based on Logarithmic Norms and Quadratic Programming
,”
IEEE. Trans. Automat. Contr.
,
65
(
7
), pp.
3207
3214
.
31.
Vahidi
,
A.
,
Kolmanovsky
,
I.
, and
Stefanopoulou
,
A.
,
2006
, “
Constraint Handling in a Fuel Cell System: A Fast Reference Governor Approach
,”
IEEE Trans. Control Syst. Technol.
,
15
(
1
), pp.
86
98
.
32.
Gabl
,
R.
,
Steynor
,
J.
,
Forehand
,
D. I.
,
Davey
,
T.
,
Bruce
,
T.
, and
Ingram
,
D. M.
,
2019
, “
Capturing the Motion of the Free Surface of a Fluid Stored Within a Floating Structure
,”
Water
,
11
(
1
), p.
50
.
33.
Rajamani
,
R.
,
2011
,
Vehicle Dynamics and Control
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
34.
Solmaz
,
S.
,
Corless
,
M.
, and
Shorten
,
R.
,
2007
,
A Methodology for The Design of Robust Rollover Prevention Controllers for Automotive Vehicles: Part 2-Active Steering
. in
American Control Conference
, pp.
1606
1611
.
35.
Strongin
,
R. G.
, and
Sergeyev
,
Y. D.
,
2013
,
Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms
, Vol.
45
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
36.
Pintér
,
J. D.
,
2013
,
Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications
, Vol.
6
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
37.
De Haan
,
L.
,
1981
, “
Estimation of the Minimum of a Function Using Order Statistics
,”
J. Am. Stat. Assoc.
,
76
(
374
), pp.
467
469
.
38.
Wood
,
G.
, and
Zhang
,
B.
,
1996
, “
Estimation of the Lipschitz Constant of a Function
,”
J. Global Optim.
,
8
(
1
), pp.
91
103
.
39.
Nugroho
,
S. A.
, and
Taha
,
A. F.
,
2020
,
Nonlinear Dynamic Systems Parameterization Using Interval-Based Global Optimization: Computing Lipschitz Constants and Beyond
. arXiv preprint arXiv:2004.12061.
40.
Yang
,
G.
,
Xu
,
H.
,
Wang
,
Z.
, and
Tian
,
Z.
,
2016
, “
Truck Acceleration Behavior Study and Acceleration Lane Length Recommendations for Metered on-ramps
,”
Int. J. Transpor. Sci. Technol.
,
5
(
2
), pp.
93
102
.
41.
Harwood
,
D. W.
,
2003
,
Review of Truck Characteristics As Factors in Roadway Design
, Vol.
505
,
Transportation Research Board
,
Washington, DC
.
You do not currently have access to this content.