Abstract

This work presents some results in the value of information calculations for multi-attribute decision-making under uncertainty. Almost all engineering activities are undertaken in the face of uncertainty and a decision that maximizes a suitably chosen metric is generally selected. It becomes essential to collect information regarding these uncertainties so that better informed decisions can be made. Calculation of the worth of this information (VoI) is a difficult task, particularly when multiple attributes are present and there exists dependence between the random attributes in the same alternative or across different alternatives. In this paper, closed-form expressions and numerical models for the calculation of VoI are presented. Particularly, we derive methods for the general scenario where we have to decide over two or more alternatives, each involving two or more continuous random attributes exhibiting some level of dependence with the others. These reduce or completely eliminate the need for conducting simulations or approximations, both of which tend to be either computationally expensive (such as Monte Carlo), limited in accuracy or both. It also allows us to conduct more involved analyses such as sensitivity analysis on design parameters and the engineer’s preferences in a feasible and even potentially automated way. We also introduce “attribute-wise VoI,” which shows that collecting information on one or more of the attribute(s) makes sense only in specific dependence scenarios and tradeoff relationships between attributes. Calculation methods for value of such information are also provided. We illustrate our models on mobile autonomous system selection decisions. We conclude with a discussion on the avenues for future research into the optimal mix of a system’s intelligence (autonomy), communication, and information gathering.

References

1.
Malak Jr
,
R. J.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J.
,
2009
, “
Multi-Attribute Utility Analysis in Set-Based Conceptual Design
,”
Comput. Aided Des.
,
41
(
3
), pp.
214
227
.
2.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
3.
Mourelatos
,
Z. P.
, and
Liang
,
J.
,
2006
, “
A Methodology for Trading-Off Performance and Robustness Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
856
863
.
4.
Choi
,
K.
, and
Youn
,
B.
,
2002
, “
On Probabilistic Approaches for Reliability-Based Design Optimization (RBDO)
,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
,
Sept. 4–6
, p.
5472
.
5.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
6.
Cardin
,
M.-A.
, and
De Neufville
,
R.
,
2008
,
A Survey of State-of-the-Art Methodologies and a Framework for Identifying and Valuing Flexible Design Opportunities in Engineering Systems
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
7.
De Neufville
,
R.
, and
Scholtes
,
S.
,
2011
,
Flexibility in Engineering Design
,
MIT Press
,
Cambridge, MA
.
8.
Nannapaneni
,
S.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Uncertainty Quantification in Reliability Estimation With Limit State Surrogates
,”
Struct. Multidiscipl. Optim.
,
54
(
6
), pp.
1509
1526
.
9.
Howard
,
R. A.
,
1966
, “
Information Value Theory
,”
IEEE Trans. Syst. Man Cybern.
,
2
(
1
), pp.
22
26
.
10.
Keisler
,
J. M.
,
Collier
,
Z. A.
,
Chu
,
E.
,
Sinatra
,
N.
, and
Linkov
,
I.
,
2014
, “
Value of Information Analysis: The State of Application
,”
Environ. Syst. Decis.
,
34
(
1
), pp.
3
23
.
11.
Felder
,
S.
, and
Mayrhofer
,
T.
,
2017
,
Medical Decision Making
,
Springer
,
Berlin
.
12.
Strong
,
M.
, and
Oakley
,
J. E.
,
2013
, “
An Efficient Method for Computing Single-Parameter Partial Expected Value of Perfect Information
,”
Med. Decis. Mak.
,
33
(
6
), pp.
755
766
.
13.
Strong
,
M.
,
Oakley
,
J. E.
, and
Brennan
,
A.
,
2014
, “
Estimating Multiparameter Partial Expected Value of Perfect Information From a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
,”
Med. Decis. Mak.
,
34
(
3
), pp.
311
326
.
14.
Panchal
,
J. H.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2009
, “
Managing Design-Process Complexity: A Value-of-Information Based Approach for Scale and Decision Decoupling
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021005
.
15.
Wijayaratna
,
K. P.
, and
Dixit
,
V. V.
,
2016
, “
Impact of Information on Risk Attitudes: Implications on Valuation of Reliability and Information
,”
J. Choice Model.
,
20
, pp.
16
34
.
16.
Xia
,
Y.
,
Xiong
,
Z.
,
Dong
,
X.
, and
Lu
,
H.
,
2017
, “
Risk Assessment and Decision-Making Under Uncertainty in Tunnel and Underground Engineering
,”
Entropy
,
19
(
10
), p.
549
.
17.
Keeney
,
R. L.
,
1977
, “
The Art of Assessing Multiattribute Utility Functions
,”
Organ. Behav. Hum. Perform.
,
19
(
2
), pp.
267
310
.
18.
Keeney
,
R. L.
,
Raiffa
,
H.
, and
Meyer
,
R. F.
,
1993
,
Decisions With Multiple Objectives: Preferences and Value Trade-Offs
,
Cambridge University Press
,
Cambridge
.
19.
Nikolaidis
,
E.
,
Mourelatos
,
Z. P.
, and
Pandey
,
V.
,
2011
,
Design Decisions Under Uncertainty With Limited Information
,
CRC Press
,
Boca Raton, FL
.
20.
Howard
,
R. A.
,
1971
, “
Proximal Decision Analysis
,”
Manage. Sci.
,
17
(
9
), pp.
507
541
.
21.
Bickel
,
J. E.
,
2008
, “
The Relationship Between Perfect and Imperfect Information in a Two-Action Risk-Sensitive Problem
,”
Decis. Anal.
,
5
(
3
), pp.
116
128
.
22.
Delquié
,
P.
,
2008
, “
The Value of Information and Intensity of Preference
,”
Decis. Anal.
,
5
(
3
), pp.
129
139
.
23.
Zan
,
K.
, and
Eric Bickel
,
J.
,
2013
, “
Components of Portfolio Value of Information
,”
Decis. Anal.
,
10
(
2
), pp.
171
185
.
24.
Sun
,
Z.
, and
Abbas
,
A. E.
,
2014
, “
On the Sensitivity of the Value of Information to Risk Aversion in Two-Action Decision Problems
,”
Environ. Syst. Decis.
,
34
(
1
), pp.
24
37
.
25.
Navidi
,
W.
,
2015
,
Statistics for Engineers and Scientists
,
McGraw-Hill Education
,
New York
, p.
929
.
26.
Pearson
,
K.
,
1896–1934
, “
Mathematical Contributions to the Theory of Evolution. VII. On the Correlation of Characters Not Quantitatively Measurable
,”
Philos. Trans. R. Soc. A
,
195
(
262–273
), pp.
1
405
.
27.
Olson
,
J. M.
, and
Weissfeld
,
L. A.
,
1991
, “
Approximation of Certain Multivariate Integrals
,”
Stat. Probab. Lett.
,
11
(
4
), pp.
309
317
.
28.
Fayed
,
H.
, and
Atiya
,
A.
,
2014
, “
A Novel Series Expansion for the Multivariate Normal Probability Integrals Based on Fourier Series
,”
Math. Comput.
,
83
(
289
), pp.
2385
2402
.
29.
Pandey
,
M. D.
,
1998
, “
An Effective Approximation to Evaluate Multinormal Integrals
,”
Struct. Saf.
,
20
(
1
), pp.
51
67
.
30.
Miwa
,
T.
,
Hayter
,
A. J.
, and
Kuriki
,
S.
,
2003
, “
The Evaluation of General Non-Centred Orthant Probabilities
,”
J. R. Stat. Soc. B: Stat. Methodol.
,
65
(
1
), pp.
223
234
.
31.
Zhou
,
J.
, and
Nowak
,
A. S.
,
1988
, “
Integration Formulas to Evaluate Functions of Random Variables
,”
Struct. Saf.
,
5
(
4
), pp.
267
284
.
32.
Drezner
,
Z.
,
1978
, “
Computation of the Bivariate Normal Integral
,”
Math. Comput.
,
132
(
141
), pp.
277
279
.
33.
Drezner
,
Z.
, and
Wesolowsky
,
G. O.
,
1990
, “
On the Computation of the Bivariate Normal Integral
,”
J. Stat. Comput. Simul.
,
35
(
1–2
), pp.
101
107
.
34.
Genz
,
A.
,
1992
, “
Numerical Computation of Multivariate Normal Probabilities
,”
J. Comput. Graph. Stat.
,
1
(
2
), pp.
141
149
. .
35.
Genz
,
A.
,
1993
, “
Comparison of Methods for the Computation of Multivariate Normal Probabilities
,”
J. Comput. Sci. Stat.
,
25
, pp.
400
405
.
36.
Genz
,
A.
,
2004
, “
Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities
,”
Stat. Comput.
,
14
(
3
), pp.
251
260
.
37.
Brodtkorb
,
P. A.
,
2006
, “
Evaluating Nearly Singular Multinormal Expectations With Application to Wave Distributions
,”
Methodol. Comput. Appl. Probab.
,
8
(
1
), pp.
65
91
.
38.
Somerville
,
P. N.
,
1998
, “
Numerical Computation of Multivariate Normal and Multivariate-t Probabilities Over Convex Regions
,”
J. Comput. Graph. Stat.
,
7
(
4
), pp.
529
544
.
39.
Shampine
,
L. F.
,
2008
, “
Matlab Program for Quadrature in 2D
,”
Appl. Math. Comput.
,
202
(
1
), pp.
266
274
.
40.
Gill
,
J.
,
2014
,
Bayesian Methods: A Social and Behavioral Sciences Approach
,
Taylor & Francis
,
London
, p.
581
.
41.
Vöcking
,
B.
,
Alt
,
H.
,
Dietzfelbinger
,
M.
,
Reischuk
,
R.
,
Scheideler
,
C.
,
Vollmer
,
H.
, and
Wagner
,
D.
,
2011
,
Binary Search. Algorithms Unplugged
,
Springer
,
Berlin
, pp.
5
11
.
42.
Frazier
,
P. I.
, and
Powell
,
W. B.
,
2010
, “
Paradoxes in Learning and the Marginal Value of Information
,”
Decis. Anal.
,
7
(
4
), pp.
378
403
.
43.
Evangelou
,
E.
, and
Eidsvik
,
J.
,
2017
, “
The Value of Information for Correlated GLMs
,”
J. Stat. Plan. Inference
,
180
, pp.
30
48
.
44.
Capser
,
S. P.
, and
Nikolaidis
,
E.
,
2017
, “
Assessing the Value of Information for Multiple, Correlated Design Alternatives
,”
SAE Int. J. Commer. Veh.
,
10
(
1
), pp.
81
95
.
45.
Devore
,
J. L.
,
Berk
,
K. N.
, and
Carlton
,
M. A.
,
2012
,
Modern Mathematical Statistics With Applications
, Vol. 285,
Springer
,
New York
.
46.
Sheng
,
X.
, and
Chen
,
G.
,
2008
, “
Some Generalized Inverses of Partition Matrix and Quotient Identity of Generalized Schur Complement
,”
Appl. Math. Comput.
,
196
(
1
), pp.
174
184
.
47.
Yang
,
S.
,
Wang
,
W.
,
Liu
,
C.
,
Deng
,
W.
, and
Karl Hedrick
,
J.
,
2017
, “
Feature Analysis and Selection for Training an End-to-End Autonomous Vehicle Controller Using Deep Learning Approach
,”
2017 IEEE Intelligent Vehicles Symposium (IV)
,
Redondo Beach, CA
,
June 11–14
,
IEEE
, pp.
1033
1038
.
48.
Ort
,
T.
,
Paull
,
L.
, and
Rus
,
D.
,
2018
, “
Autonomous Vehicle Navigation in Rural Environments Without Detailed Prior Maps
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–26
,
IEEE
, pp.
2040
2047
.
49.
Jentsch
,
F.
,
2016
,
Human–Robot Interactions in Future Military Operations
,
CRC Press
,
Boca Raton, FL
.
50.
Harwin
,
S.
, and
Lucieer
,
A.
,
2012
, “
Assessing the Accuracy of Georeferenced Point Clouds Produced Via Multi-View Stereopsis From Unmanned Aerial Vehicle (UAV) Imagery
,”
Remote Sens.
,
4
(
6
), pp.
1573
1599
.
51.
NATO
,
2007
, “
RTO Human Factors and Medicine Panel Task Group (HFM-078/TG-017). Uninhabitated Military Vehicles (UMVs): Human Factors Issues in Augmenting the Force
.” RTO Technical Report (RTO-TR-078), www.dtic.mil/dtic/tr/fulltext/u2/a475047.pdf
52.
Rivard
,
L.
, and
Hehner-Rivard
,
C.
,
2014
,
Complex Terrain Mapping: Integrated Use of Stereo Air Photos and Satellite Images
,
Springer
,
New York
.
53.
Chaika
,
M.
,
Gorsich
,
D.
, and
Sun
,
T. C.
,
2004
, “
Some Statistical Tests in the Study of Terrain Modelling
,”
Int. J. Veh. Des.
,
36
(
2–3
), pp.
132
148
.
54.
Lamb
,
D.
,
Reid
,
A.
,
Truong
,
N.
, and
Weller
,
J.
,
2003
, “
Terrain Validation and Enhancements for a Virtual Proving Ground
,”
Proceedings of the Driving Simulation Conference-North America (DSC-NA 2003)
,
Dearborn, MI
,
Oct. 8–10
, p.
3
.
You do not currently have access to this content.