Abstract

Velocity obstacle (VO) is one of the popular reactive navigation algorithms for the path planning of autonomous agents. The collision-free property can be guaranteed if the agent is able to choose a velocity outside the VO region under the assumption that obstacles maintain a constant velocity within the control cycle time of the agent. To date, the selection of the optimal velocity relies on either sampling or optimization approaches. The sampling approach can maintain the same amount of computation cost but may miss feasible solutions under collision risks with an insufficient number of samples. The optimization approach such as the linear programming demands convexity of the constraints in the velocity space which may not be satisfied considering non-holonomic agents. In addition, the algorithm has varying computation demands depending on the navigation situation. This paper proposes an analytic approach for choosing a candidate velocity rather than relying on sampling or optimization approaches. The analytic approach can significantly reduce computation costs without sacrificing performance. Agents with both holonomic and non-holonomic constraints are considered to demonstrate the performance and efficiency of the proposed approach. Extensive comparison studies with static, non-reactive, and reactive moving obstacles demonstrate that the analytical VO is computationally much more efficient than the optimization-based approach and performs better than the sampling-based approach. Major video results of this paper can be accessed online.

References

1.
Fiorini
,
P.
, and
Shiller
,
Z.
,
1998
, “
Motion Planning in Dynamic Environments Using Velocity Obstacles
,”
Int. J. Robot. Res.
,
17
(
7
), pp.
760
772
.
2.
Shiller
,
Z.
,
Large
,
F.
, and
Sekhavat
,
S.
,
2001
, “
Motion Planning in Dynamic Environments: Obstacles Moving Along Arbitrary Trajectories
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
,
May 21–26
, Vol. 4, pp.
3716
3721
.
3.
Kluge
,
B.
, and
Prassler
,
E.
,
2004
, “
Reflective Navigation: Individual Behaviors and Group Behaviors
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, Vol. 4, pp.
4172
4177
.
4.
Fulgenzi
,
C.
,
Spalanzani
,
A.
, and
Laugier
,
C.
,
2007
, “
Dynamic Obstacle Avoidance in Uncertain Environment Combining PVOs and Occupancy Grid
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, pp.
1610
1616
.
5.
Van Berg
,
J. D.
,
Lin
,
M.
, and
Manocha
,
D.
,
2008
, “
Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1928
1935
.
6.
Snape
,
J.
,
Berg
,
J. V. D.
,
Guy
,
S. J.
, and
Manocha
,
D.
,
2011
, “
The Hybrid Reciprocal Velocity Obstacle
,”
IEEE Trans. Robot.
,
27
(
4
), pp.
696
706
.
7.
Snape
,
J.
,
Van Den Berg
,
J.
,
Guy
,
S. J.
, and
Manocha
,
D.
,
2010
, “
Smooth and Collision-Free Navigation for Multiple Robots Under Differential-Drive Constraints
,”
Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
4584
4589
.
8.
Berg
,
J. V. D.
,
Guy
,
S. J.
,
Lin
,
M.
, and
Manocha
,
D.
,
2011
, “Reciprocal N-Body Collision Avoidance,”
Robotics Research
,
C.
Pradalier
,
R.
Siegwart
, and
G.
Hirzinger
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
3
19
.
9.
Alonso-Mora
,
J.
,
Breitenmoser
,
A.
,
Beardsley
,
P.
, and
Siegwart
,
R.
,
2012
, “
Reciprocal Collision Avoidance for Multiple Car-Like Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
360
366
.
10.
Alonso-Mora
,
J.
,
Breitenmoser
,
A.
,
Rufli
,
M.
,
Beardsley
,
P.
, and
Siegwart
,
R.
,
2013
, “Optimal Reciprocal Collision Avoidance for Multiple Non-holonomic Robots,”
Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics
, vol.
83
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
203
216
.
11.
Bareiss
,
D.
, and
Van Den Berg
,
J.
,
2015
, “
Generalized Reciprocal Collision Avoidance
,”
Int. J. Robot. Res.
,
34
(
12
), pp.
1501
1514
.
12.
Jenie
,
Y. I.
,
Van Kampen
,
E.-
,
De Visser
,
C. C.
,
Ellerbroek
,
J.
, and
Hoekstra
,
J. M.
,
2015
, “
Selective Velocity Obstacle Method for Deconflicting Maneuvers Applied to Unmanned Aerial Vehicles
,”
J. Guid. Control Dyn.
,
38
(
6
), pp.
1140
1145
.
13.
Roelofsen
,
S.
,
Gillet
,
D.
, and
Martinoli
,
A.
,
2017
, “
Collision Avoidance With Limited Field of View Sensing: A Velocity Obstacle Approach
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
1922
1927
.
14.
Xu
,
T.
,
Zhang
,
S.
,
Jiang
,
Z.
,
Liu
,
Z.
, and
Cheng
,
H.
,
2020
, “
Collision Avoidance of High-Speed Obstacles for Mobile Robots Via Maximum-Speed Aware Velocity Obstacle Method
,”
IEEE Access
,
8
, pp.
138493
138507
.
15.
Xia
,
G.
,
Han
,
Z.
,
Zhao
,
B.
, and
Wang
,
X.
,
2020
, “
Unmanned Surface Vehicle Collision Avoidance Trajectory Planning in an Uncertain Environment
,”
IEEE Access
,
8
, pp.
207844
207857
.
16.
Poonganam
,
S. N. J.
,
Gopalakrishnan
,
B.
,
Avula
,
V. S. S. B. K.
,
Singh
,
A. K.
,
Krishna
,
K. M.
, and
Manocha
,
D.
,
2020
, “
Reactive Navigation Under Non-parametric Uncertainty Through Hilbert Space Embedding of Probabilistic Velocity Obstacles
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2690
2697
.
17.
Zhu
,
X.
,
Yi
,
J.
,
Ding
,
H.
, and
He
,
L.
,
2020
, “
Velocity Obstacle Based on Vertical Ellipse for Multi-Robot Collision Avoidance
,”
J. Intell. Robot. Syst.
,
99
(
1
), pp.
183
208
.
18.
Fox
,
D.
,
Burgard
,
W.
, and
Thrun
,
S.
,
1997
, “
The Dynamic Window Approach to Collision Avoidance
,”
IEEE Robot. Autom. Mag.
,
4
(
1
), pp.
23
33
.
19.
Jenie
,
Y. I.
,
Van Kampen
,
E.-
,
De Visser
,
C. C.
,
Ellerbroek
,
J.
, and
Hoekstra
,
J. M.
,
2016
, “
Three-Dimensional Velocity Obstacle Method for Uncoordinated Avoidance Maneuvers of Unmanned Aerial Vehicles
,”
J. Guid. Control Dyn.
,
39
(
10
), pp.
2312
2323
.
20.
Tan
,
C. Y.
,
Huang
,
S.
,
Tan
,
K. K.
, and
Teo
,
R. S. H.
,
2020
, “
Three Dimensional Collision Avoidance for Multi unmanned Aerial Vehicles Using Velocity Obstacle
,”
J. Intell. Robot. Syst.
,
97
(
1
), pp.
227
248
.
You do not currently have access to this content.