Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper addresses the time-critical rendezvous problem for a pursuing autonomous unmanned vehicle, e.g., an unmanned aerial vehicle (UAV), guided using the concept of true proportional-navigation guidance, which is a variant of proportional-navigation guidance. In existing vehicle routing and flight time-constrained guidance techniques, specific rendezvous guidance commands are designed based on the specific motion of the target. In contrast to that, we propose a unified guidance command for a UAV that guarantees a time-critical rendezvous with a target that moves arbitrarily. We explore the purview of true proportional-navigation guidance and posit that a guidance law thus designed may be a potential candidate for designing time-critical rendezvous strategies against various target motions, even when the pursuer does not necessarily have a speed advantage over the target. We first derive a closed-form expression for the flight duration until rendezvous, over which we exercise control to make the pursuing vehicle rendezvous with the target at any feasible time prescribed a priori. Next, we ensure that the necessary flight-time-based error variable converges to zero with an optimal convergence pattern with respect to a suitable cost function. We finally validate the efficacy of the proposed unified guidance command via numerical simulations.

References

1.
Singh
,
P.
,
Giri
,
D. K.
, and
Ghosh
,
A. K.
,
2023
, “
Dynamic Surface Neuro-backstepping Based Flight Control With Asymmetric Output Constraints
,”
IEEE Trans. Aerosp. Electron. Syst.
,
59
(
4
), pp.
3859
3870
.
2.
Kawamura
,
E.
, and
Azimov
,
D.
,
2022
, “
Extremal Control and Modified Explicit Guidance for Autonomous Unmanned Aerial Vehicles
,”
ASME J. Auton. Veh. Syst.
,
2
(
1
), p.
011005
.
3.
Zhao
,
J.-S.
,
Wei
,
S.-T.
,
Sun
,
X.-C.
, and
Ji
,
J.-J.
,
2023
, “
Kinematics and Trajectory Planning of the Masonry Robot
,”
J. Auton. Veh. Syst.
,
2
(
3
), p.
031005
.
4.
Ogunbodede
,
O.
, and
Singh
,
T.
,
2022
, “
Load Vibration Mitigation in Unmanned Aerial Vehicles With Cable Suspended Load
,”
ASME J. Auton. Veh. Syst.
,
1
(
3
), p.
034502
.
5.
Sinha
,
A.
, and
Cao
,
Y.
,
2023
, “
Three-Dimensional Autonomous Guidance for Enclosing a Stationary Target Within Arbitrary Smooth Geometrical Shapes
,”
IEEE Trans. Aerosp. Electron. Syst.
,
59
(
6
), pp.
1
10
.
6.
Hu
,
C.
, and
Jin
,
Y.
,
2023
, “
Path Planning for Autonomous Systems Design: A Focus Genetic Algorithm for Complex Environments
,”
ASME J. Auton. Veh. Syst.
,
2
(
4
), p.
041001
.
7.
Russell
,
J. S.
,
Ye
,
M.
,
Anderson
,
B. D. O.
,
Hmam
,
H.
, and
Sarunic
,
P.
,
2020
, “
Cooperative Localization of a GPS-Denied UAV Using Direction-of-Arrival Measurements
,”
IEEE Trans. Aerosp. Electron. Syst.
,
56
(
3
), pp.
1966
1978
.
8.
Sinha
,
A.
, and
Kumar
,
S. R.
,
2020
, “
Supertwisting Control-Based Cooperative Salvo Guidance Using Leader–Follower Approach
,”
IEEE Trans. Aerosp. Electron. Syst.
,
56
(
5
), pp.
3556
3565
.
9.
Febbo
,
H.
,
Jayakumar
,
P.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2021
, “
Real-Time Trajectory Planning for Automated Vehicle Safety and Performance in Dynamic Environments
,”
ASME J. Auton. Veh. Syst.
,
1
(
4
), p.
041001
.
10.
Ji
,
J.
, and
Zhao
,
J.-S.
,
2023
, “
Multi-point Path Planning Algorithm for a Mobile Robot With Composite Moving Costs
,”
ASME J. Auton. Veh. Syst.
,
2
(
3
), p.
031002
.
11.
Hubbard
,
B.
,
Karasz
,
P.
, and
Reed
,
S.
,
2019
, “Two Major Saudi Oil Installations Hit by Drone Strike,” https://www.nytimes.com/2019/09/14/world/middleeast/saudi-arabia-refineries-drone-attack.html
12.
Kerns
,
A. J.
,
Shepard
,
D. P.
,
Bhatti
,
J. A.
, and
Humphreys
,
T. E.
,
2014
, “
Unmanned Aircraft Capture and Control Via GPS Spoofing
,”
J. Field Rob.
,
31
(
4
), pp.
617
636
.
13.
Chakravarthy
,
A.
, and
Ghose
,
D.
,
2020
, “
Collision Cone-Based Net Capture of a Swarm of Unmanned Aerial Vehicles
,”
J. Guidance Control Dyn.
,
43
(
9
), pp.
1688
1710
.
14.
Lee
,
J.-I.
,
Jeon
,
I.-S.
, and
Tahk
,
M.-J.
,
2007
, “
Guidance Law to Control Impact Time and Angle
,”
IEEE Trans. Aerosp. Electron. Syst.
,
43
(
1
), pp.
301
310
.
15.
Sinha
,
A.
,
Kumar
,
S. R.
, and
Mukherjee
,
D.
,
2022
, “
Three-Agent Time-Constrained Cooperative Pursuit-Evasion
,”
J. Intell. Rob. Syst.
,
104
(
28
), pp.
1
27
.
16.
Kumar
,
S. R.
, and
Mukherjee
,
D.
,
2022
, “
Three-Dimensional Nonsingular Impact Time Guidance With Limited Field-of-View
,”
IEEE Trans. Control Syst. Technol.
,
30
(
4
), pp.
1448
1459
.
17.
Sinha
,
A.
, and
Kumar
,
S. R.
,
2022
, “
Cooperative Target Capture Using Predefined-Time Consensus Over Fixed and Switching Networks
,”
Aerosp. Sci. Technol.
,
127
, p.
107686
.
18.
Choi
,
J.
,
Seo
,
M.
,
Shin
,
H.-S.
, and
Oh
,
H.
,
2022
, “
Adversarial Swarm Defence Using Multiple Fixed-Wing Unmanned Aerial Vehicles
,”
IEEE Trans. Aerosp. Electron. Syst.
,
58
(
6
), pp.
5204
5219
.
19.
Sinha
,
A.
,
Kumar
,
S. R.
, and
Mukherjee
,
D.
,
2021
, “
Three-Dimensional Guidance With Terminal Time Constraints for Wide Launch Envelops
,”
J. Guidance Control Dyn.
,
44
(
2
), pp.
343
359
.
20.
Tekin
,
R.
,
Erer
,
K. S.
, and
Holzapfel
,
F.
,
2017
, “
Polynomial Shaping of the Look Angle for Impact-Time Control
,”
J. Guidance Control Dyn.
,
40
(
10
), pp.
2668
2673
.
21.
Cho
,
D.
,
Kim
,
H. J.
, and
Tahk
,
M.-J.
,
2015
, “
Nonsingular Sliding Mode Guidance for Impact Time Control
,”
J. Guidance Control Dyn.
,
39
(
1
), pp.
61
68
.
22.
Jeon
,
I.-S.
,
Lee
,
J.-I.
, and
Tahk
,
M.-J.
,
2006
, “
Impact-Time-Control Guidance Law for Anti-ship Missiles
,”
IEEE Trans. Control Syst. Technol.
,
14
(
2
), pp.
260
266
.
23.
Kumar
,
S. R.
, and
Ghose
,
D.
,
2015
, “
Impact Time Guidance for Large Heading Errors Using Sliding Mode Control
,”
IEEE Trans. Aerosp. Electron. Syst.
,
51
(
4
), pp.
3123
3138
.
24.
Kim
,
M.
,
Jung
,
B.
,
Han
,
B.
,
Lee
,
S.
, and
Kim
,
Y.
,
2015
, “
Lyapunov-Based Impact Time Control Guidance Laws Against Stationary Targets
,”
IEEE Trans. Aerosp. Electron. Syst.
,
51
(
2
), pp.
1111
1122
.
25.
Sinha
,
A.
,
Kumar
,
S. R.
, and
Mukherjee
,
D.
,
2021
, “
Three-Dimensional Nonlinear Cooperative Salvo Using Event-Triggered Strategy
,”
J. Guidance Control Dyn.
,
44
(
2
), pp.
328
342
.
26.
Kumar
,
S. R.
, and
Mukherjee
,
D.
,
2019
, “
Deviated Pursuit Based Interception at a Priori Fixed Time
,”
J. Guidance Control Dyn.
,
42
(
9
), pp.
2124
2131
.
27.
Livermore
,
R.
, and
Shima
,
T.
,
2018
, “
Deviated Pure-Pursuit-Based Optimal Guidance Law for Imposing Intercept Time and Angle
,”
J. Guidance Control Dyn.
,
41
(
8
), pp.
1807
1814
.
28.
Tekin
,
R.
,
Erer
,
K. S.
, and
Holzapfel
,
F.
,
2016
, “
Control of Impact Time With Increased Robustness Via Feedback Linearization
,”
J. Guidance Control Dyn.
,
39
(
7
), pp.
1682
1689
.
29.
Gutman
,
S.
,
2017
, “
Impact-Time Vector Guidance
,”
J. Guidance Control Dyn.
,
40
(
8
), pp.
2110
2114
.
30.
Hu
,
Q.
,
Han
,
T.
, and
Xin
,
M.
,
2019
, “
Sliding-Mode Impact Time Guidance Law Design for Various Target Motions
,”
J. Guidance Control Dyn.
,
42
(
1
), pp.
136
148
.
31.
Kim
,
H.-G.
,
Cho
,
D.
, and
Kim
,
H. J.
,
2019
, “
Sliding Mode Guidance Law for Impact Time Control Without Explicit Time-to-Go Estimation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
55
(
1
), pp.
236
250
.
32.
Nanavati
,
R. V.
,
Kumar
,
S. R.
, and
Maity
,
A.
,
2020
, “
Nonlinear Simultaneous Interception Guidance Strategies for Stationary Targets
,”
J. Guidance Control Dyn.
,
43
(
1
), pp.
154
161
.
33.
Tahk
,
M.-J.
,
Shim
,
S.-W.
,
Hong
,
S.-M.
,
Choi
,
H.-L.
, and
Lee
,
C.-H.
,
2018
, “
Impact Time Control Based on Time-to-Go Prediction for Sea-Skimming Antiship Missiles
,”
IEEE Trans. Aerosp. Electron. Syst.
,
54
(
4
), pp.
2043
2052
.
34.
Sinha
,
A.
,
Nanavati
,
R. V.
, and
Ranjan Kumar
,
S.
,
2023
, “
Three-Dimensional Nonlinear Impact Time Guidance Using Predicted Interception Point
,”
J. Guidance Control Dyn.
,
46
(
3
), pp.
608
617
.
35.
Ghose
,
D.
,
1994
, “
True Proportional Navigation With Maneuvering Target
,”
IEEE Trans. Aerosp. Electron. Syst.
,
30
(
1
), pp.
229
237
.
36.
Kumar
,
S. R.
, and
Mukherjee
,
D.
,
2022
, “
True-Proportional-Navigation Inspired Finite-Time Homing Guidance for Time Constrained Interception
,”
Aerosp. Sci. Technol.
,
123
, p.
107499
.
37.
Gozzini
,
G.
,
Invernizzi
,
D.
,
Panza
,
S.
,
Giurato
,
M.
, and
Lovera
,
M.
,
2020
, “
Air-to-Air Automatic Landing of Unmanned Aerial Vehicles: A Quasi Time-Optimal Hybrid Strategy
,”
IEEE Control Syst. Lett.
,
4
(
3
), pp.
692
697
.
38.
He
,
S.
, and
Lee
,
C.-H.
,
2018
, “
Optimality of Error Dynamics in Missile Guidance Problems
,”
J. Guidance Control Dyn.
,
41
(
7
), pp.
1624
1633
.
You do not currently have access to this content.