Abstract

This paper addresses the critical need to quantify vehicle trajectory uncertainty in autonomous driving under environmental variability. We focus on predicting the posterior distribution of vehicle trajectories over a fixed horizon, given an initial state and a sequence of actions. We propose and compare three approaches: a probabilistic seq2seq model based on stochastic variational Gaussian processes, sequential Monte Carlo simulation with a single-step Gaussian process model, and a hybrid model that leverages the strengths of both methods. Each approach incorporates a baseline vehicle kinematics model to enhance stability and convergence. We evaluate these methods using a dataset generated from the CARLA simulator, assessing both point error metrics and probabilistic prediction metrics. This research introduces novel approaches to quantifying vehicle trajectory uncertainty through various uncertainty quantification techniques, with the goal of improving the safety and reliability of autonomous vehicle control systems.

References

1.
Hu
,
H.
,
Wang
,
Q.
,
Du
,
L.
,
Lu
,
Z.
, and
Gao
,
Z.
,
2022
, “
Vehicle Trajectory Prediction Considering Aleatoric Uncertainty
,”
Knowl. Based Syst.
,
255
, p.
109617
.
2.
Huang
,
Y.
,
Du
,
J.
,
Yang
,
Z.
,
Zhou
,
Z.
,
Zhang
,
L.
, and
Chen
,
H.
,
2022
, “
A Survey on Trajectory-Prediction Methods for Autonomous Driving
,”
IEEE Trans. Intell. Veh.
,
7
(
3
), pp.
652
674
.
3.
Lytrivis
,
P.
,
Thomaidis
,
G.
, and
Amditis
,
A.
,
2008
, “
Cooperative Path Prediction in Vehicular Environments
,”
2008 11th International IEEE Conference on Intelligent Transportation Systems
,
Beijing, China
,
Oct. 12–15
, pp.
803
808
.
4.
Lin
,
C.-F.
,
Ulsoy
,
A.
, and
LeBlanc
,
D.
,
2000
, “
Vehicle Dynamics and External Disturbance Estimation for Vehicle Path Prediction
,”
IEEE Trans. Control Syst. Technol.
,
8
(
3
), pp.
508
518
.
5.
Joseph
,
J.
,
Doshi velez
,
F.
,
Huang
,
A.
, and
Roy
,
N.
,
2011
, “
A Bayesian Nonparametric Approach to Modeling Motion Patterns
,”
Auton. Robots
,
31
(
11
), pp.
383
400
.
6.
Mandalia
,
H. M.
, and
Salvucci
,
M. D. D.
,
2005
, “
Using Support Vector Machines for Lane-Change Detection
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
49
(
22
), pp.
1965
1969
.
7.
Varshneya
,
D.
, and
Srinivasaraghavan
,
G.
,
2017
, “Human Trajectory Prediction Using Spatially Aware Deep Attention Models.”
8.
Zhang
,
T.
,
Song
,
W.
,
Fu
,
M.
,
Yang
,
Y.
, and
Wang
,
M.
,
2021
, “
Vehicle Motion Prediction at Intersections Based on the Turning Intention and Prior Trajectories Model
,”
IEEE/CAA J. Autom. Sin.
,
8
(
10
), pp.
1657
1666
.
9.
Ren
,
L.
, and
Xi
,
Z.
,
2022
, “
Bias-Learning-Based Model Predictive Controller Design for Reliable Path Tracking of Autonomous Vehicles Under Model and Environmental Uncertainty
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091706
.
10.
Ammoun
,
S.
, and
Nashashibi
,
F.
,
2009
, “
Real Time Trajectory Prediction for Collision Risk Estimation Between Vehicles
,”
2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing
,
Cluj-Napoca, Romania
,
Aug. 27–29
, pp.
417
422
.
11.
Batz
,
T.
,
Watson
,
K.
, and
Beyerer
,
J.
,
2009
, “
Recognition of Dangerous Situations Within a Cooperative Group of Vehicles
,”
2009 IEEE Intelligent Vehicles Symposium
,
Xi'an, China
,
June 3–5
, pp.
907
912
.
12.
Broadhurst
,
A.
,
Baker
,
S.
, and
Kanade
,
T.
,
2005
, “
Monte Carlo Road Safety Reasoning
,”
IEEE Proceedings. Intelligent Vehicles Symposium
,
Las Vegas, NV
,
June 6–8
, pp.
319
324
.
13.
Rajamani
,
R.
,
2006
,
Vehicle Dynamics and Control
, Vol.
01
,
Springer
,
New York
.
14.
Sutskever
,
I.
,
Vinyals
,
O.
, and
Le
,
Q. V.
,
2014
, “Sequence to Sequence Learning With Neural Networks.”
15.
Cho
,
K.
,
van Merrienboer
,
B.
,
Bahdanau
,
D.
, and
Bengio
,
Y.
,
2014
, “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.”
16.
Bahdanau
,
D.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2016
, “Neural Machine Translation by Jointly Learning to Align and Translate.”
17.
Chorowski
,
J.
,
Bahdanau
,
D.
,
Serdyuk
,
D.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2015
, “Attention-Based Models for Speech Recognition.”
18.
Rush
,
A. M.
,
Chopra
,
S.
, and
Weston
,
J.
,
2015
, “A Neural Attention Model for Abstractive Sentence Summarization.”
19.
Shi
,
X.
,
Chen
,
Z.
,
Wang
,
H.
,
Yeung
,
D.-Y.
,
Wong
,
W. K.
, and
Woo
,
W. C.
,
2015
, “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Now Casting.”
20.
Ma
,
X.
,
Dai
,
Z.
,
He
,
Z.
,
Na
,
J.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2017
, “Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.”
21.
Qin
,
Y.
,
Song
,
D.
,
Chen
,
H.
,
Cheng
,
W.
,
Jiang
,
G.
, and
Cottrell
,
G.
,
2017
, “A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction.”
22.
Luong
,
M.-T.
,
Pham
,
H.
, and
Manning
,
C. D.
,
2015
, “Effective Approaches to Attention-Based Neural Machine Translation.”
23.
Gehring
,
J.
,
Auli
,
M.
,
Grangier
,
D.
,
Yarats
,
D.
, and
Dauphin
,
Y. N.
,
2017
, “Convolutional Sequence to Sequence Learning.”
24.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2023
, “Attention Is All You Need.”
25.
Hensman
,
J.
,
Fusi
,
N.
, and
Lawrence
,
N. D.
,
2013
, “Gaussian Processes for Big Data.”
26.
Hensman
,
J.
,
Matthews
,
A.
, and
Ghahramani
,
Z.
,
2014
, “Scalable Variational Gaussian Process Classification.”
27.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.
28.
Gawlikowski
,
J.
,
Tassi
,
C. R. N.
,
Ali
,
M.
,
Lee
,
J.
,
Humt
,
M.
,
Feng
,
J.
,
Kruspe
,
A.
, et al
,
2022
, “A Survey of Uncertainty in Deep Neural Networks.”
29.
Ko
,
J.
, and
Fox
,
D.
,
2009
, “
GP-Bayesfilters: Bayesian Filtering Using Gaussian Process Prediction and Observation Models
,”
Auton. Rob.
,
27
, pp.
75
90
.
30.
Turner
,
R. E.
, and
Sahani
,
M.
,
2011
,
Two Problems With Variational Expectation Maximisation for Time Series Models
,
Cambridge University Press
,
Cambridge
, pp.
104
124
.
31.
Robert
,
C.
, and
Casella
,
G.
,
2013
,
Monte Carlo Statistical Methods Springer Texts in Statistics
,
Springer
,
New York
.
32.
Cowles
,
M. K.
, and
Carlin
,
B. P.
,
1996
, “
Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review
,”
J. Am. Stat. Assoc.
,
91
(
434
), pp.
883
904
.
33.
Bishop
,
C. M.
, and
Nasrabadi
,
N. M.
,
2006
,
Pattern Recognition and Machine Learning
, Vol.
4
,
Springer
,
New York
.
34.
Murphy
,
K. P.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
MIT Press
,
Cambridge, MA
.
35.
Dosovitskiy
,
A.
,
Ros
,
G.
,
Codevilla
,
F.
,
Lopez
,
A.
, and
Koltun
,
V.
,
2017
, “
CARLA: An Open Urban Driving Simulator
,”
Proceedings of the 1st Annual Conference on Robot Learning
,
Mountain View, CA
,
Nov. 13–15
, pp.
1
16
.
36.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.
37.
de Boor
,
C.
,
2001
,
A Practical Guide to Splines Applied Mathematical Sciences
,
Springer
,
New York
.
You do not currently have access to this content.