The cause of cavitation in mechanical heart valves is investigated with Medtronic Hall tilting disk valves in an in vitro flow system simulating the closing event in the mitral position. Recordings of pressure wave forms and photographs in the vicinity of the inflow surface of the valve are attempted under controlled transvalvular loading rates averaged during valve closing period. The results revealed presence of a local flow field with a very high velocity around the seat stop of mechanical heart valves that could induce pressure reduction below liquid vapor pressure and a cloud of cavitation bubbles. The analysis of the results indicates that the “fluid squeezing” between the stop and occluder as the main cause of cavitation in Medtronic Hall valves. The threshold loading rate for cavitation initiation around the stop was found to be very low (300 and 400 mmHg/s; half the predicted normal human loading rate that was estimated to be 750 mmHg/s) because even a mild impact created a high speed local flow field on the occluder surface that could induce pressure reduction below vapor pressure. The present study suggests that mechanical heart valves with stops at the edge of major orifice region are more vulnerable to cavitation, and hence, have higher potential for damage on valve components and formed elements in blood.

1.
Bluestein
D.
,
Einav
S.
, and
Hwang
N. H. C.
,
1994
, “
A Squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve Prosthesis
,”
J. Biomechanics
, Vol.
27
, pp.
1369
1378
.
2.
Chandran, K. B., 1988, “Heart Valve Prostheses: in vitro flow dynamics,” in Encyclopedia of Medical Devices and Instrumentation John G., Webster, ed., Wiley, New York, 3rd ed., pp. 1475–1483.
3.
Chandran
K. B.
,
Schoephoerster
R.
, and
Dellsperger
K. C.
,
1989
, “
Effect of prosthetic mitral valve geometry and orientation on flow dynamics in a model human left ventricle
,”
J. Biomechanics
, Vol.
22
, pp.
51
65
.
4.
Chandran
K. B.
,
Lee
C. S.
, and
Chen
L. D.
,
1994
, “
Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: Correlation with cavitation initiation
,”
J. Heart Valve Disease
, Vol.
3
(
Suppl. 1
), pp.
S65–S76
S65–S76
.
5.
Cheon, G. J., and Chandran, K. B., 1994, “Transient behavior analysis of a mechanical monoleaflet heart valve prosthesis in the closing phase,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING (in press).
6.
Dimitri
W. R.
, and
Williams
B. T.
,
1990
, “
Fracture of the Duromedics Mitral Valve Housing with Leaflet Escape
,”
J. of Cardiovascular Surg.
, Vol.
31
(
1
), pp.
41
46
.
7.
Deuvaert
F. E.
,
Devriendt
J.
, and
Massaut
J.
,
1989
, “
Leaflet escape of a mitral Duromedics prosthesis (case report)
,
Acta Chir Belgium
, Vol.
89
, pp.
15
18
.
8.
Garrison
L. A.
,
Lamson
T. C.
,
Deutsch
S.
,
Geselowitz
D. B.
,
Gaumond
R. P.
, and
Tarbell
J. M.
,
1994
, “
An in-vitro investigation of prosthetic heart valve cavitation in blood
,”
J. Heart Valve Disease
, Vol.
3
(
suppl. 1
), pp.
S8–S24
S8–S24
.
9.
Graaf
Y.
,
Waard
F.
,
Herwerden
L. A.
, and
Defauw
J.
,
1992
, “
Risk of Strut Fracture of Bjork-Shiley Valves
,”
Lancet.
, Vol.
339
, pp.
257
261
.
10.
Graf
T.
,
Fischer
H.
,
Reul
H.
, and
Rau
G.
,
1991
, “
Cavitation potential of mechanical heart valve prostheses
,”
The International Journal of Artificial Organs
, Vol.
14
(
3
), pp.
169
174
.
11.
Graf
T.
,
Reul
H.
,
Dietz
W.
,
Wilmes
R.
, and
Rau
G.
,
1992
, “
Cavitation of mechanical heart valves under physiological conditions
,”
J. Heart Valve Disease
, Vol.
1
, pp.
131
141
.
12.
Guo
G. X.
,
Xu
C. C.
, and
Hwang
N. H. C.
,
1990
, “
Laser assessment of leaflet closing motion in prosthetic heart valves
,”
J. Biomedical Engineering
, Vol.
12
, pp.
477
481
.
13.
Guo, G. X., Zhou, J. S., and Hwang, N. H. C., 1991, “Mechanical valve closing velocity: rigid vs flexible mounting,” Advances in Bioengineering, ASME, Vol. 20, pp. 461–463.
14.
Guyton, A. C., 1987, “Human Physiology and Mechanisms of Disease,” S. B. Saunders Co., Philadelphia, 4th ed.
15.
Hjelms
E.
,
1983
, “
Escape of a leaflet from a St. Jude medical prosthesis in the mitral position
,”
J. of Thoracic and Cardiovascular Surg.
, Vol.
31
, pp.
310
312
.
16.
Kafesjian, R., Wieting, D., Ely, J., Chahine, G., Frederick, G., and Watson, R., 1989, “Characterization of Cavitation Potential of Pyroliytic Carbon,” Proc. of The International Symposium on Heart Valve Disease, London.
17.
Kafesjian
R.
,
Howanec
M.
,
Ward
G. D.
,
Diep
L.
,
Wagstaff
L. S.
, and
Rhee
R.
,
1994
, “
Cavitation Damage of Pyrolitic Carbon in Mechanical Heart Valves
,”
J. Heart Valve Disease
, Vol.
3
(
Suppl. 1
), pp.
S2–S7
S2–S7
.
18.
Klepetko
W.
,
1989
, “
Leaflet Fracture in Edwards-Duromedics Bileaflet Valves
,”
J. of Thoratic and Cardiovascular Surgery
, Vol.
97
, pp.
90
94
.
19.
Knapp, R. J., Daily, J. W., and Hammit, F. G., 1970, Cavitation, McGraw-Hill, New York.
20.
Kuiper, G., 1989, “Reflections on Cavitation Inception,” ASME Cavitation And Multiphase Flow Forum, June, Vol. 23, pp. 1–13.
21.
Kumar
N.
,
Balasundaram
S.
,
Rickard
M.
,
al Halees
N.
, and
Duran
C. M.
,
1991
, “
Leaflet embolization from Duromedics valves: a report of two cases
,”
J. of Thoracic and Cardiovascular Surgery
, Vol.
39
(
6
), pp.
382
383
.
22.
Lamson
T. C.
,
Rosenberg
G.
,
Geselowitz
D. B.
,
Deutsch
S.
,
Stinebring
D. R.
,
Frangos
J. A.
, and
Tarbell
J. M.
,
1993
, “
Relative blood damage in the three phases of a prosthetic heart valve flow cycle
,”
ASAIO
, Vol.
39
,
M626–M633
M626–M633
.
23.
Lawrie, J. W., 1928, Glycerol and The Glycols, The Chemical Engineering Catalog Co., New York.
24.
Lee, C. S., 1993, “Dynamics associated with the closure of mechanical heart valves: cavitation and closure flow,” Ph.D. thesis University of lowa.
25.
Lee
C. S.
, and
Chandran
K. B.
,
1994
, “
Instantaneous backflow through peripheral clearance of Medtronic Hall tilting disc valve at the moment of closure
,”
Annals of Biomedical Engineering
, Vol.
22
, pp.
371
380
.
26.
Lee
C. S.
,
Chandran
K. B.
, and
Chen
L. D.
,
1994
, “
Cavitation dynamics of mechanical heart valve prostheses
,”
Artificial Organs
, Vol.
18
, pp.
758
767
.
27.
Leuer, L., 1986, “In vitro evaluation of drive parameters and valve selection for the total artificial heart,” Presented at the annual meeting of the Canadian Council of Cardiovascular Perfusionists, Ottawa, Ontario, Canada.
28.
Lindblom
D.
,
Rodriguez
L.
, and
Bjork
V. O.
,
1989
, “
Mechanical failure of the Bjork-Shiley valve
,”
J. of Thoracic Cardiovascular Surgery
, Vol.
97
(
1
), pp.
95
97
.
29.
Makhijani
V. B.
,
Yang
H. Q.
,
Singhal
A. K.
, and
Hwang
N. H. C.
,
1994
, “
An experimental-computational analysis of MHV cavitation: Effects of leaflet squeezing and rebound
,”
J. Heart Valve Disease
, Vol.
3
(
Suppl. 1
), pp.
S35–S48
S35–S48
.
30.
Quijano, R., 1988, “Edwards-Duromedics Dysfunctional Analysis,” Proc. Cardiostim. 6th International Congress, Monte Carlo, Monaco
31.
Quinones
M. A.
,
Gaasch
W. H.
,
Alexander
J. K.
,
1976
, “
Influence of acute changes in preload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man
,”
Circulation
, Vol.
53
, pp.
293
302
.
32.
Richard
G.
,
Beavan
A.
, and
Strzepa
P.
,
1994
, “
Cavitation threshold ranking and erosion characteristics of bileaflet heart valve prosthesis
,”
J. Heart Valve Disease
,
3
(
Suppl. 1
);
S94–S101
S94–S101
.
33.
Stinebring
D. R.
,
Lamson
T. C.
, and
Deutsch
S.
,
1991
, “
Techniques for in vitro observation of cavitation in prosthetic heart valves
,”
Proceedings of ASME Cavitation and Multiphase Flow Forum
Vol.
109
, pp.
119
124
.
34.
Tokuno
T.
,
Dube
C. M.
,
Walker
W. F.
,
1977
, “
Cavitation Near Moving Prosthetic Surfaces
,”
Tans. of ISAO
, Vol.
1
, pp.
166
168
.
35.
Wu
Z. J.
,
Wang
Y.
, and
Hwang
N. H. C.
,
1994
, “
Occluder closing behavior: a key factor in mechanical valve cavitation
,”
J. Heart Valve Disease
,” Vol.
3
(
Suppl. 1
), pp.
S25–S34
S25–S34
.
This content is only available via PDF.
You do not currently have access to this content.