The endothelial cells (ECs) lining a blood vessel wall are exposed to both the wall shear stress (WSS) of blood flow and the circumferential strain (CS) of pulsing artery wall motion. These two forces and their interaction are believed to play a role in determining remodeling of the vessel wall and development of arterial disease (atherosclerosis). This study focused on the WSS and CS dynamic behavior in a compliant model of a coronary artery taking into account the curvature of the bending artery and physiological radial wall motion. A three-dimensional finite element model with transient flow and moving boundaries was set up to simulate pulsatile flow with physiological pressure and flow wave forms characteristic of the coronary arteries. The characteristic coronary artery curvature and flow conditions applied to the simulation were: aspect ratio (λ)=10, diameter variation (DV)=6 percent, mean Reynolds number (Re)=150, and unsteadiness parameter (α)=3. The results show that mean WSS is about 50 percent lower on the inside wall than the outside wall while WSS oscillation is stronger on the inside wall. The stress phase angle (SPA) between CS and WSS, which characterizes the dynamics of the mechanical force pattern applied to the endothelial cell layer, shows that CS and WSS are more out of phase in the coronaries than in any other region of the circulation (−220 deg on the outside wall, −250 deg on the inside wall). This suggests that in addition to WSS, SPA may play a role in localization of coronary atherosclerosis. [S0148-0731(00)01201-2]
Skip Nav Destination
Article navigation
February 2000
Technical Papers
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
Yuchen Qiu,
Yuchen Qiu
Department of Chemical Engineering and the Bioengineering Program, The Pennsylvania State University, University Park, PA 16802
Search for other works by this author on:
John M. Tarbell
John M. Tarbell
Department of Chemical Engineering and the Bioengineering Program, The Pennsylvania State University, University Park, PA 16802
Search for other works by this author on:
Yuchen Qiu
Department of Chemical Engineering and the Bioengineering Program, The Pennsylvania State University, University Park, PA 16802
John M. Tarbell
Department of Chemical Engineering and the Bioengineering Program, The Pennsylvania State University, University Park, PA 16802
Contributed by the Bioengineering Division for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Division June 20, 1998; revised manuscript received August 22, 1999. Associate Technical Editor: D. N. Ku.
J Biomech Eng. Feb 2000, 122(1): 77-85 (9 pages)
Published Online: August 22, 1999
Article history
Received:
June 20, 1998
Revised:
August 22, 1999
Citation
Qiu , Y., and Tarbell , J. M. (August 22, 1999). "Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery ." ASME. J Biomech Eng. February 2000; 122(1): 77–85. https://doi.org/10.1115/1.429629
Download citation file:
Get Email Alerts
Related Articles
Large Negative Stress Phase Angle (SPA) Attenuates Nitric Oxide Production in Bovine Aortic Endothelial Cells
J Biomech Eng (June,2006)
Pulsatile Flow in an End-to-Side Vascular Graft Model: Comparison of Computations With Experimental Data
J Biomech Eng (February,2001)
Guidewire Reproducibilty and Modeling
J. Med. Devices (June,2008)
Pulsatile Blood Flow Effects on Temperature Distribution and Heat Transfer in Rigid Vessels
J Biomech Eng (October,2001)
Related Proceedings Papers
Related Chapters
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Fourth Edition
Overcladding Repairs to Water Leakage Problems: Case Studies
Water Problems in Building Exterior Walls: Evaluation, Prevention, and Repair
Contextual Intervention/Technical Invention
Exterior Wall Systems: Glass and Concrete Technology, Design, and Construction