The endothelial cells (ECs) lining a blood vessel wall are exposed to both the wall shear stress (WSS) of blood flow and the circumferential strain (CS) of pulsing artery wall motion. These two forces and their interaction are believed to play a role in determining remodeling of the vessel wall and development of arterial disease (atherosclerosis). This study focused on the WSS and CS dynamic behavior in a compliant model of a coronary artery taking into account the curvature of the bending artery and physiological radial wall motion. A three-dimensional finite element model with transient flow and moving boundaries was set up to simulate pulsatile flow with physiological pressure and flow wave forms characteristic of the coronary arteries. The characteristic coronary artery curvature and flow conditions applied to the simulation were: aspect ratio (λ)=10, diameter variation (DV)=6 percent, mean Reynolds number (Re)=150, and unsteadiness parameter (α)=3. The results show that mean WSS is about 50 percent lower on the inside wall than the outside wall while WSS oscillation is stronger on the inside wall. The stress phase angle (SPA) between CS and WSS, which characterizes the dynamics of the mechanical force pattern applied to the endothelial cell layer, shows that CS and WSS are more out of phase in the coronaries than in any other region of the circulation (−220 deg on the outside wall, −250 deg on the inside wall). This suggests that in addition to WSS, SPA may play a role in localization of coronary atherosclerosis. [S0148-0731(00)01201-2]

1.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
,
1971
, “
Atheroma and Arterial Wall Shear: Observation, Correlation, and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London (Biol.)
,
177
, pp.
109
159
.
2.
Fry
,
D. L.
,
1968
, “
Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients
,”
Circ. Res.
,
22
, pp.
165
197
.
3.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation
,”
Arteriosclerosis
,
5
, pp.
293
302
.
4.
DePaola
,
N.
,
Gimbrone
,
M. A.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
, pp.
1254
1257
.
5.
Berthiaume, F., and Frangos, J. A., 1993, “Effects of Flow on Anchor Age-Dependent Mammalian Cells-Secreted Products,” in: Frangos, J. A., ed., Physical Forces and the Mammalian Cell, Academic Press, New York, pp. 139–192.
6.
Davies
,
P.
,
1995
, “
Flow Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
, pp.
519
560
.
7.
Jo
,
H.-J.
,
Dull
,
R. O.
,
Hollis
,
T. M.
, and
Tarbell
,
J. M.
,
1991
, “
Endothelial Albumin Permeability is Shear Dependent, Time Dependent and Reversible
,”
Am. J. Physiol.
,
260
, pp.
H1992–H1996
H1992–H1996
.
8.
Sill
,
H. W.
,
Chang
,
Y. S.
,
Artman
,
J. R.
,
Frangos
,
J. A.
,
Hollis
,
T. M.
, and
Tarbell
,
J. M.
,
1995
, “
Shear Stress Increases Hydraulic Conductivity of Cultured Endothelial Monolayers
,”
Am. J. Physiol.
,
268
, pp.
H535–H543
H535–H543
.
9.
Banes, A. J., 1993, “Mechanical Strain and the Mammalian Cell,” in: Frangos, J. A., ed., Physical Forces and the Mammalian Cell, Academic Press, New York, pp. 81–123.
10.
Ives
,
C. L.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
,
1986
, “
Mechanical Effects on Endothelial Cell Morphology: In vitro Assessment
,”
In Vitro Cell Dev. Biol.
,
22
, pp.
500
507
.
11.
Moore
,
J. E.
, Jr.
,
Burki
,
E.
,
Suciu
,
A.
,
Zhao
,
S.
,
Burnier
,
M.
,
Brunner
,
H. R.
, and
Meister
,
J. J.
,
1994
, “
A Device for Subjecting Vascular Endothelial Cells to Both Fluid Shear Stress and Circumferential Cyclic Stretch
,”
Ann. Biomed. Eng.
,
22
, pp.
416
422
.
12.
Cheng
,
J. J.
,
Wung
,
B. S.
,
Chao
,
W. J.
, and
Wang
,
D. L.
,
1996
, “
Cyclic Strain Enhances Adhesion of Monocytes to Endothelial Cells by Increasing Intracellular Adhesion Molecule-1 Expression
,”
Hypertension
,
28
, pp.
386
391
.
13.
Cheng
,
J. J.
,
Chao
,
W. J.
,
Wung
,
B. S.
, and
Wang
,
D. L.
,
1996
, “
Cyclic Strain-Induced Plasminogen Activator Inhibitor-1 (PAI-1) Release From Endothelial Cells Involves Reactive Oxygen Species.
Biochem. Biophys. Res. Commun.
,
225
, pp.
100
105
.
14.
Carosi
,
J. A.
,
Eskin
,
S. G.
, and
Mcintire
,
L.
,
1992
, “
Cyclical Strain Effects on Production of Vasoactive Materials in Cultured Endothelial Cells
,”
J. Cell Physiol.
,
151
, pp.
29
36
.
15.
Wang
,
D. M.
, and
Tarbell
,
J. M.
,
1992
, “
Nonlinear Analysis of Flow in an Elastic Tube (Artery): Steady Streaming Effects
,”
J. Fluid Mech.
,
239
, pp.
341
358
.
16.
Wang
,
D. M.
, and
Tarbell
,
J. M.
,
1995
, “
Nonlinear Analysis of Oscillatory Flow, With a Nonzero Mean, in an Elastic Tube (Artery)
,”
ASME J. Biomech. Eng.
,
117
, pp.
127
135
.
17.
Benbrahim
,
A.
,
L’italien
,
G. J.
,
Milinazzo
,
B. B.
, et al.
,
1994
, “
A Compliant Tubular Device to Study the Influences of Wall Strain and Fluid Shear Stress on Cells of the Vascular Wall
,”
J. Vasc. Surg.
,
20
, pp.
184
194
.
18.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
,
1998
, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler. Thromb. Vasc. Biol.
,
18
, pp.
686
692
.
19.
Qiu
,
Y.
,
Wang
,
S.
,
Hin
,
B.
,
Lee
,
H. C.
, and
Tarbell
,
J. M.
,
1998
, “
Simultaneous Fluid Wall Shear Stress and Circumferential Wall Strain Alter Endothelial Cell Biochemical Production
,”
Ann. Biomed. Eng.
,
26
, p.
S-57
S-57
.
20.
Fox
,
B.
, and
Seed
,
W. A.
,
1981
, “
Location of Early Atheroma in the Human Coronary Arteries
,”
ASME J. Biomech. Eng.
,
103
, pp.
208
212
.
21.
Grottum
,
P.
,
Svindland
,
A.
, and
Walloe
,
L.
,
1983
, “
Localization of Atherosclerotic Lesions in the Bifurcation of the Main Left Coronary Artery
,”
Atherosclerosis
,
47
, pp.
55
62
.
22.
Friedman
,
M. H.
,
Deters
,
O. J.
,
Mark
,
F. F.
,
Bargeson
,
C. B.
, and
Hutchins
,
G. M.
,
1983
, “
Arterial Geometry Affects Hemodynamics: A Potential Risk Factor for Atherosclerosis
,”
Atherosclerosis
,
46
, pp.
225
231
.
23.
Nerem
,
R. M.
,
1984
, “
Atherogenesis: Hemodynamics, Vascular Geometry, and the Endothelium
,”
Biorheology
,
21
, pp.
565
569
.
24.
Sabbah
,
H. N.
,
Kjaja
,
F.
,
Brymer
,
J. F.
,
Hawkins
,
E. T.
, and
Stein
,
P. D.
,
1983
, “
Radial Velocity Gradient in the Right Coronary Artery of Humans: Possible Relevance to Atheroslerosis,” Arteriosclerosis Council Abstract
,
Arteriosclerosis
,
3
, p.
483a
483a
.
25.
Atabek
,
H. B.
,
Ling
,
S. C.
, and
Patel
,
D. J.
,
1975
, “
Analysis of Coronary Flow Fields in Thoracotomized Dogs
,”
Circulation Engng
,
107
, pp.
307
315
.
26.
Patel
,
D. J.
, and
Fry
,
D. L.
,
1964
, “
In Situ Pressure-Radius-Length Measurements in Ascending Aorta of Anesthetized Dogs
,”
J. Appl. Physiol.
,
19
, pp.
413
426
.
27.
Weston
,
M. W.
, and
Tarbell
,
J. M.
,
1997
, “
Wall Shear Rate Measurements in an Elastic Curved Artery Model
,”
Biorheology
,
34
, pp.
1
17
.
28.
Rhee
,
K.
, and
Tarbell
,
J. M.
,
1994
, “
A Study of the Wall Shear Rate Distribution Near the End-to-End Anastomosis of a Rigid Graft and a Compliant Artery
,”
J. Biomech.
,
27
, pp.
329
338
.
29.
Lee
,
C. S.
, and
Tarbell
,
J. M.
,
1997
, “
Wall Shear Rate Distribution in an Abdominal Aortic Bifurcation Model: Effects of Vessel Compliance and Phase Angle Between Pressure and Flow Waveforms
,”
ASME J. Biomech. Eng.
,
119
, pp.
333
42
.
30.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
1996
, “
Computational Simulation of Flow in the End-to-End Anastomosis of a Rigid Graft and a Compliant Artery
,”
ASAIO J.
,
42
, pp.
M702–M709
M702–M709
.
31.
Nichols
,
W. W.
,
Conti
,
C. R.
,
Walker
,
W. E.
, and
Milnor
,
W. R.
,
1977
, “
Input Impedance at the Systemic Circulation in Man
,”
Circ. Res.
,
40
, pp.
451
458
.
32.
White
,
K. C.
,
Kavanaugh
,
J. F.
,
Wang
,
D. M.
, and
Tarbell
,
J. M.
,
1994
, “
Hemodynamics and Wall Shear Rate in the Abdominal Aorta of Dogs: Effects of Vasoactive Drugs
,”
Circ. Res.
,
75
, pp.
637
649
.
33.
Klanchar
,
M.
,
Tarbell
,
J. M.
, and
Wang
,
D. M.
,
1990
, “
In Vitro Study of the Influence of Radial Wall Motion on Wall Shear Stress in an Elastic Tube Model of the Aorta
,”
Circ. Res.
,
66
, pp.
1624
1635
.
34.
Hamakiotes
,
C. C.
, and
Berger
,
S. A.
,
1988
, “
Fully Developed Pulsatile Flow in a Curved Pipe
,”
J. Fluid Mech.
,
195
, pp.
23
55
.
35.
Soh
,
W. Y.
, and
Berger
,
S. A.
,
1984
, “
Laminar Entrance Flow in a Curved Pipe
,”
J. Fluid Mech.
,
148
, pp.
109
135
.
36.
Talbot
,
L.
, and
Gong
,
K. O.
,
1983
, “
Pulsatile Flow in a Curved Pipe
,”
J. Fluid Mech.
,
127
, pp.
1
25
.
37.
Chandran
,
K. B.
, and
Yearwood
,
T. L.
,
1981
, “
Experimental Study of Physiological Pulsatile Flow in a Curved Tube
,”
J. Fluid Mech.
,
111
, pp.
59
85
.
38.
Wells
,
M. K.
,
Winter
,
D. C.
,
Nelson
,
A. W.
, and
McCarthy
,
T. C.
,
1977
, “
Blood Velocity Pattern in Coronary Arteries
,”
ASME J. Biomech. Eng.
,
99
, pp.
26
32
.
39.
Altobelli
,
S. A.
, and
Nerem
,
R. M.
,
1985
, “
An Experimental Study of Coronary Fluid Mechanics
,”
ASME J. Biomech. Eng.
,
107
, pp.
16
23
.
40.
Asakura
,
T.
, and
Karino
,
T.
,
1990
, “
Flow Pattern and Spatial Distribution of Atherosclerotic Lesion in Human Coronary Arteries
,”
Circ. Res.
,
66
, pp.
1045
1066
.
41.
Chang
,
L. J.
, and
Tarbell
,
J. M.
,
1988
, “
A Numerical Study of Flow in Curved Tubes Simulation Coronary Arteries
,”
J. Biomech.
,
21
, pp.
927
937
.
42.
Perktold
,
K.
,
Nerem
,
R. M.
, and
Teter
,
R. O.
,
1991
, “
A Numerical Calculation of Flow in a Curved Tube Model of the Left Main Coronary Artery
,”
J. Biomech.
,
24
, pp.
175
189
.
43.
Sabbah
,
H. N.
,
Walburn
,
F. J.
, and
Stein
,
P. D.
,
1984
, “
Patterns of Flow in the Left Coronary Artery
,”
ASME J. Biomech. Eng.
,
106
, pp.
272
279
.
44.
Chandran
,
K. B.
,
Swanson
,
W. M.
,
Ghista
,
D. N.
, and
Vayo
,
H. W.
,
1974
, “
Oscillatory Flow in Thin Walled Curved Elastic Tubes
,”
Ann. Biomed. Eng.
,
2
, pp.
392
412
.
45.
Chandran
,
K. B.
,
Hosey
,
R. R.
,
Ghista
,
D. N.
, and
Vayo
,
V. W.
,
1979
, “
Analysis of Fully Developed Unsteady Viscous Flow in a Curved Elastic Tube Model to Provide Fluid Mechanical Data for Some Circulatory Path-Physiological Situations and Assist Devices
,”
ASME J. Biomech. Eng.
,
101
, pp.
114
123
.
46.
Nerem, R. M., and Seed, W. A., 1983, “Coronary Artery Geometry and Its Fluid Mechanical Implications,” Fluid Dynamics as a Localizing Factor in Atherosclerosis, Schettler, G., ed., Springer, Berlin.
47.
Thurston
,
G. B.
,
1979
, “
Rheological Parameters for the Viscosity, Viscoelasticity and Thixotropy of Blood
,”
Biorheology
,
16
, p.
149
149
.
48.
Patel
,
D. J.
,
Schilder
,
D. P.
, and
Mallos
,
A. J.
,
1960
, “
Mechanical Properties and Dimensions of the Major Pulmonary Arteries
,”
J. Appl. Physiol.
,
15
, pp.
92
96
.
49.
Santamarina
,
A.
,
Weydahl
,
E.
,
Siegel
,
J. M.
, and
Moore
,
J. E.
,
1988
, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
,
26
, pp.
944
954
.
50.
He
,
X.
, and
Ku
,
D.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
, pp.
74
82
.
51.
Lee
,
C. S.
, and
Tarbell
,
J. M.
,
1998
, “
Influence of Vasoactive Drugs on Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation: an In Vitro study
,”
Ann. Biomed. Eng.
,
26
, pp.
200
212
.
52.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
2000
, “
Numerical Simulation of Oxygen Mass Transfer in a Compliant Curved Tube Model of a Coronary Artery
,”
Ann. Biomed. Eng.
,
28
, pp.
26
38
.
You do not currently have access to this content.