The high incidence of thromboembolic complications of mechanical heart valves (MHV) limits their success as permanent implants. The thrombogenicity of all MHV is primarily due to platelet activation by contact with foreign surfaces and by nonphysiological flow patterns. The latter include elevated flow stresses and regions of recirculation of blood that are induced by valve design characteristics. A numerical simulation of unsteady turbulent flow through a bileaflet MHV was conducted, using the Wilcox k–ω turbulence model for internal low-Reynolds-number flows, and compared to quantitative flow visualization performed in a pulse duplicator system using Digital Particle Image Velocimetry (DPIV). The wake of the valve leaflet during the deceleration phase revealed an intricate pattern of interacting shed vortices. Particle paths showed that platelets that were exposed to the highest flow stresses around the leaflets were entrapped within the shed vortices. Potentially activated, such platelets may tend to aggregate and form free emboli. Once formed, such free emboli would be convected downstream by the shed vortices, increasing the risk of systemic emboli. [S0148-0731(00)01202-4]

1.
Horstkotte
,
D.
,
Korfer
,
R.
,
Seipel
,
L.
,
Bircks
,
W.
, and
Loogen
,
F.
,
1983
, “
Late Complications in Patients With Bjork–Shiley and St. Jude Medical Heart Valve Replacement
,”
Circulation
,
68
, (Suppl II), pp.
175
184
.
2.
Grunkemeier
,
G. L.
, and
Rahimtoola
,
S. H.
,
1990
, “
Artificial Heart Valves
,”
Annu. Rev. Med.
,
41
, pp.
251
263
.
3.
National Heart, Lung and Blood Institute Working Group on Blood Material Interactions, 1985, Guidelines for Blood–Material Interactions,” Bethesda, MD, NIH Publication No. 85-2185.
4.
Gerrard, J. M., and White, J. M., 1976, “The Structure and Function of Platelets With Emphasis on Their Contractile Nature,” in: Pathology Annual, H. L. Iochain, ed., Appleton Century Crofts, New York, pp. 31–58.
5.
Figliola
,
R. S.
, and
Mueller
,
T. J.
,
1981
, “
On the Hemolytic and Thrombogenic Potential of Occluder Prosthetic Heart Valves From in Vitro Measurements
,”
ASME J. Biomech. Eng.
,
103
, pp.
83
90
.
6.
Baldwin
,
J. T.
,
Tarbell
,
J. M.
,
Deutsch
,
S.
, and
Geselowitz
,
D. B.
,
1991
, “
Mean Velocities and Reynolds Stresses Within Regurgitant Jets Produced by Tilting Disk Valves
,”
ASAIO Trans.
,
37
, No.
3
, pp.
M348–M349
M348–M349
.
7.
Reif
,
T. H.
,
Schulte
,
T. J.
, and
Hwang
,
N. H. C.
,
1990
, “
Estimation of the Rotational Undamped Natural Frequency of Bileaflet Cardiac Valve Prostheses
,”
ASME J. Biomech. Eng.
,
112
, pp.
327
332
.
8.
Lee
,
C. S.
, and
Chandran
,
K. B.
,
1995
, “
Numerical Simulation of Instantaneous Backflow Through Central Clearance of Bileaflet Mechanical Heart Valves at Closure: Shear Stress and Pressure Fields Within Clearance
,”
Med. Biol. Eng. Comput.
,
33
, No.
3
, pp.
257
263
.
9.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Frangos
,
J. A.
, and
Tarbell
,
J. M.
,
1993
, “
Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle
,”
ASAIO J.
,
39
, No.
3
, pp.
M626–M6233
M626–M6233
.
10.
Harker
,
L. A.
, and
Slichter
,
S. J.
,
1970
, “
Studies of Platelet and Fibrinogen Kinetics in Patients With Prosthetic Heart Valves
,”
N. Engl. J. Med.
,
283
, pp.
1302
1305
.
11.
Edmunds
, Jr.,
L. H.
,
1987
, “
Thrombotic and Bleeding Complications of Prosthetic Heart Valves
,”
Ann. Thoracic Surgery
,
44
, No.
4
, pp.
430
445
.
12.
Dewanjee, M. K., 1990, “Quantitation of Platelet Thrombus in Cardiac Valve Prostheses With the Radiolabeled Platelets,” in: Platelets and Atherosclerosis, X. Y. Kessler, ed., Springer-Verlag, Berlin–Heidelberg, pp. 71–86.
13.
Turitto, V. T., Weiss, H. J., Baumgartner, H. R., Badimon, L., and Fuster, V., 1987, “Cells and Aggregates at Surfaces,” in: Blood Contact With Artificial Surfaces, E. F. Leonard, V. T. Turitto, and L. Vroman, eds., New York Academy of Science, New York, Vol. 516, pp. 453–467.
14.
Lelah
,
M. D.
,
Lamprecht
,
L. K.
, and
Cooper
,
S. L.
,
1984
, “
A Canine Ex Vivo Series Shunt for Evaluating Thrombus Deposition on Polymer Surfaces
,”
J. Biomed. Mater. Res.
,
18
, pp.
475
496
.
15.
Wurzinger
,
L. J.
,
Blasberg
,
P.
, and
Schmid-Scho¨nbein
,
H.
,
1985
, “
Towards a Concept of Thrombosis in Accelerated Flow: Rheology, Fluid Dynamics, and Biochemistry
,”
Biorheology
,
22
, pp.
437
449
.
16.
Folie
,
B. J.
, and
McIntire
,
L. V.
,
1989
, “
Mathematical Analysis of Mural Thrombogenesis: Concentration Profiles of Platelet-Activating Agents and Effects of Viscous Shear Flow
,”
Biophys. J.
,
56
, pp.
1121
1141
.
17.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Nunez
,
H.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
,
1993
, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler. Thromb.
,
12
, pp.
1806
1813
.
18.
Alveriadou
,
B. R.
,
Moake
,
J. L.
,
Turner
,
N. A.
,
Ruggeri
,
Z. M.
,
Folie
,
B. J.
,
Phillips
,
M. D.
,
Schreiber
,
A. B.
,
Hrinda
,
M. E.
, and
McIntire
,
L. V.
,
1993
, “
Real-Time Analysis of Shear Dependent Thrombus Formation and Its Blockade by Inhibitors of Von Wilebrand Factor Binding to Platelets
,”
Blood
,
81
, pp.
1263
1276
.
19.
Hellums, J. D., Peterson, D. M., Stathopoulos, N. A., Moake, J. L., and Giorgio, T. D., 1987, “Studies on the Mechanisms of Shear-Induced Platelet Activation,” in: Cerebral Ischemia and Hemorheology, A. Hartman and W. Kuschinsky, eds., Springer-Verlag, New York, pp. 80–89.
20.
Sutera
,
S. P.
,
Nowak
,
M. D.
,
Joist
,
J. H.
,
Zeffren
,
D. J.
, and
Bauman
,
J. E.
,
1988
, “
A Programmable, Computer-Controlled, Cone-Plate Viscometer for the Application of Pulsatile Shear Stress to Platelet Suspensions
,”
Biorheology
,
25
, pp.
449
459
.
21.
Purvis
,
N. B.
, and
Giorgio
,
T. D.
,
1991
, “
The Effects of Elongational Stress Exposure on the Activation and Aggregation of Blood Platelets
,”
Biorheology
,
28
, pp.
355
367
.
22.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1997
, “
Fluid Mechanics of Flow Through a Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
, No.
2
, pp.
344
356
.
23.
Hoerner, S. F., 1958, Fluid Dynamic Drag, published by the author, New Jersey.
24.
Hussain
,
A. K. M. F.
,
1983
, “
Coherent Structures—Reality and Myth
,”
Phys. Fluids
,
26
, No.
10
, pp.
2816
2850
.
25.
Hussain
,
A. K. M. F.
,
1986
, “
Coherent Structures and Turbulence
,”
J. Fluid Mech.
,
173
, pp.
303
356
.
26.
Hussain, A. K. M. F., 1975, “Mechanics of Pulsatile Flows of Relevance to the Cardiovascular System,” in: Cardiovascular Flow Dynamics and Measurements, N. H. C. Hwang and N. A. Norman, eds., University Park Press, Baltimore, MD, Chap. 15, pp. 541–633.
27.
Gross
,
J. M.
,
Shermer
,
C. D.
, and
Hwang
,
N. H. C.
,
1988
, “
Vortex Shedding in Bileaflet Heart Valve Prosthesis
,”
ASAIO Trans.
,
34
, No.
3
, pp.
845
850
.
28.
Huang
,
Z. J.
,
Merkle
,
C. L.
,
Abdallah
,
S.
, and
Tarbell
,
J. M.
,
1994
, “
Numerical Simulation of Unsteady Laminar Flow Through a Tilting Disk Heart Valve: Prediction of Vortex Shedding
,”
J. Biomech.
,
27
, No.
4
, pp.
391
402
.
29.
Merrill
,
E. W.
,
Gilliland
,
E. R.
,
Cokelet
,
G. R.
,
Shin
,
H.
,
Britten
,
A.
, and
Wells
,
R. E.
,
1963
, “
Rheology of Human Blood, Near and at Zero Flow
,”
Biophys. J.
,
3
, pp.
199
213
.
30.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1983
, “
GMRES: A Generalized Minimal Residuals Algorithm for Solving Nonsymmetric Linear Systems
,”
Math. Comput.
,
44
, pp.
417
424
.
31.
Wilcox, D. C., 1993, Turbulence Modeling for CFD, DCW Industries, Inc., 5354 Palm Drive, La Can˜ada, CA 91011.
32.
Wilcox
,
D. C.
,
1994
, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
,
32
, No.
2
, pp.
247
255
.
33.
Gosman, A. D., and Ioannides, L., 1981, “Aspects of Computer Simulation of Liquid-Fueled Combustors,” AIAA 19th Aerospace Meeting, Paper No. 81-0323, St. Louis, MO.
34.
Willert
,
C. E.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
, pp.
181
193
.
35.
Bellhouse
,
B. J.
, and
Bellhouse
,
F. H.
,
1968
, “
Mechanism of Closure of the Aortic Valve
,”
Nature (London)
,
217
, pp.
86
87
.
You do not currently have access to this content.