The anulus fibrosus (AF) is a lamellar, fibrocartilaginous component of the intervertebral disc, which exhibits highly anisotropic behaviors in tension. These behaviors arise from the material’s unique collagen structure. We have investigated the use of a linear, fiber-induced anisotropic model for the AF using a quadratic strain energy density formulation with an explicit representation of the collagen fiber populations. We have proposed a representative set of intrinsic material properties using independent datasets of the AF from the literature and appropriate thermodynamic constraints. The model was validated by comparing predictions with previous experimental data for AF behavior and its dependence on fiber angle. The model predicts that compressible effects may exist for the AF, and suggests that physical effects of the equivalent “matrix,” “fiber,” “fiber–matrix,” and “fiber–fiber,” interactions may be important contributors to the mechanical behavior of the AF. [S0148-0731(00)00802-5]

1.
Weidenbaum, M., Iatridis, J., Setton, L. A., Foster, R. J., and Mow, V. C., 1996, “Mechanical Behavior of the Intervertebral Disc and the Effects of Degeneration,” in: Low Back Pain: A Scientific and Clinical Overview, J. N. Weinstein and S. L. Gordon, eds., American Academy of Orthopaedic Surgeons, pp. 557–582.
2.
Goel, V. K., 1996, “Biomechanics of Disc Herniation and Related Issues,” in: Low Back Pain: A Scientific and Clinical Overview, J. N. Weinstein and S. L. Gordon, eds., American Academy of Orthopaedic Surgeons, pp. 289–304.
3.
Bayliss, M. T., and Johnstone, B., 1992, “Biochemistry of the Intervertebral Disc,” in: The Lumbar Spine and Back Pain, M. I. V. Jayson and A. S. J. Dixon, eds., Churchill Liningstone, pp. 111–131.
4.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Annulus Fibrosus
,”
Spine
,
15
, No.
5
, pp.
402
410
.
5.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
, pp.
75
88
.
6.
Horton
,
W. G.
,
1958
, “
Further Observations on the Elastic Mechanism of the Intervertebral Disc
,”
J. Bone Jt. Surg.
,
40B
, No.
3
, pp.
552
557
.
7.
Hsu
,
E. W.
, and
Setton
,
L. A.
,
1999
, “
Diffusion Tensor Microscopy of the Intervertebral Disc Annulus Fibrosus
,”
Magn. Reson. Med.
,
41
, No.
5
, pp.
992
999
.
8.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus
,”
Spine
,
20
, No.
24
, pp.
2690
2701
.
9.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
, No.
4
, pp.
452
461
.
10.
Galante
,
J.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand. Suppl.
,
100
, pp.
1
91
.
11.
Wu
,
H. C.
, and
Yao
,
R. F.
,
1976
, “
Mechanical Behavior of the Human Annulus Fibrosus
,”
J. Biomech.
,
9
, pp.
1
7
.
12.
Adams
,
M. A.
, and
Green
,
T. P.
,
1993
, “
Tensile Properties of the Annulus Fibrosus
,”
Eur. Spine J.
,
2
, pp.
203
208
.
13.
Kasra
,
M.
,
Pranianpour
,
M.
,
Wang
,
J. L.
,
Shirazi-Adl
,
A.
, and
Grynpas
,
M. D.
,
1997
, “
Effect of Strain Rate on Failure Behavior of the Anulus Fibrosus in Tension
,”
ASME Adv. Bioeng.
,
BED-36
, pp.
205
206
.
14.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J.
,
1997
, “
Radial Tensile Properties of the Lumbar Anulus Fibrosus are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
, pp.
814
819
.
15.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1989
, “
Mechanical Properties and Failure Mechanisms of the Lumbar Disc Annulus
,”
Trans. Orthop. Res. Soc.
,
14
, p.
355
355
.
16.
Nachemson
,
A.
,
1963
, “
Influence of Spinal Movements on the Lumbar Intradiscal Pressure and on the Tensile Stresses in the Annulus Fibrosus
,”
Acta Orthop. Scand.
,
33
, pp.
183
207
.
17.
Stokes
,
I. A. F.
,
1987
, “
Surface Strain on Human Intervertebral Discs
,”
J. Orthop. Res.
,
5
, pp.
348
355
.
18.
Goel
,
V. K.
,
Kim
,
Y. E.
,
Lim
,
T. H.
, and
Weinstein
,
J. N.
,
1988
, “
Analytical Investigation of the Mechanics of Spinal Instrumentation
,”
Spine
,
13
, No.
9
, pp.
1003
1011
.
19.
Goel
,
V. K.
,
Monroe
,
B. T.
,
Gilbertson
,
L. G.
, and
Brinckmann
,
P.
,
1995
, “
Interlaminar Shear Stresses and Laminae Separation in a Disc; Finite Element Analysis of the L3–L4 Motion Segment Subjected to Axial Compressive Loads
,”
Spine
,
20
, No.
6
, pp.
689
698
.
20.
Shirazi-Adl
,
S. A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
,
1984
, “
Stress Analysis of the Lumbar Disc-Body Unit in Compression: a 3D Nonlinear Finite Element Study
,”
Spine
,
9
, No.
2
, pp.
120
134
.
21.
Shirazi-Adl
,
A.
,
1994
, “
Nonlinear Stress Analysis of the Whole Lumbar Spine in Torsion—Mechanics of Facet Articulation
,”
J. Biomech.
,
27
, No.
3
, pp.
289
299
.
22.
Ueno
,
K.
, and
Liu
,
Y. K.
,
1987
, “
Three-Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Tension
,”
ASME J. Biomech. Eng.
,
109
, pp.
200
209
.
23.
Natarajan
,
R. N.
,
Ke
,
J. H.
, and
Andersson
,
G. B. J.
,
1994
, “
A Model to Study the Disc Degeneration Process
,”
Spine
,
19
, No.
3
, pp.
259
265
.
24.
Belytschko
,
T.
,
Kulak
,
R. F.
, and
Schultz
,
A. B.
,
1974
, “
Finite Element Stress Analysis of an Intervertebral Disc
,”
J. Biomech.
,
7
, pp.
277
285
.
25.
Spilker
,
R. L.
,
Jakobs
,
D. M.
, and
Schultz
,
A. B.
,
1986
, “
Material Constants for a Finite Element Model of the Intervertebral Disc With a Fiber Composite Annulus
,”
ASME J. Biomech. Eng.
,
108
, pp.
1
11
.
26.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
,
1996
, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
,
29
, No.
10
, pp.
1331
1339
.
27.
Duncan
,
N. A.
,
Ashford
,
F. A.
, and
Lotz
,
J. C.
,
1996
, “
The Effect of Strain Rate on the Axial Stress–Strain Response of the Human Annulus Fibrosus in Tension and Compression: Experiment and Poroelastic Finite Element Predictions
,”
ASME Adv. Bioeng.
,
33
, pp.
401
402
.
28.
Laible
,
J. P.
,
Pflaster
,
D. S.
,
Krag
,
M. H.
,
Simon
,
B. R.
, and
Haugh
,
L. D.
,
1993
, “
Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc
,”
Spine
,
18
, No.
5
, pp.
659
670
.
29.
Simon
,
B. R.
,
Wu
,
J. S. S.
,
Carlton
,
M. W.
,
Evans
,
J. H.
, and
Kazarian
,
L. E.
,
1985
, “
Structural Models for Human Spinal Motion Segments Based on a Poroelastic View of the Intervertebral Disc
,”
ASME J. Biomech. Eng.
,
107
, pp.
327
335
.
30.
Spencer, A. J. M., 1972, Deformations of Fibre-Reinforced Materials, Oxford University Press.
31.
Spencer, A. J. M., 1984, “Constitutive Theory for Strongly Anisotropic Solids,” in: Continuum Theory of the Mechanics of Fibre-Reinforced Composites, A. J. M. Spencer, ed., Springer-Verlag, pp. 1–32.
32.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Mechanical Properties of the Human Annulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
, No.
2
, pp.
212
221
.
33.
Spencer, A. J. M., 1971, “Theory of Invariants,” in: Continuum Physics, A. C. Eringen, ed., Academic Press, pp. 239–353.
34.
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press.
35.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1996
, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Trans. Orthop. Res. Soc.
,
21
, p.
271
271
.
36.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Krishnan
,
L.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1996
, “
Shear Mechanical Behavior of the Human Lumbar Annulus Fibrosus and the Effects of Degeneration
,”
ASME Adv. Bioeng.
,
BED-33
, pp.
149
150
.
37.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus
,”
Spine
,
19
, No.
12
, pp.
1310
1319
.
38.
Bovendeerd
,
P. H. M.
,
Arts
,
T.
,
Huyghe
,
J. M.
,
Van Campen
,
D. H.
, and
Reneman
,
R. S.
,
1992
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: a Model Study
,”
J. Biomech.
,
25
, No.
10
, pp.
1129
1140
.
39.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
,
113
, pp.
42
55
.
40.
Humphrey
,
J. D.
, and
Yin
,
F. C. P.
,
1987
, “
New Constitutive Formulation for Characterizing the Mechanical Behavior of Soft Tissues
,”
Biophys. J.
,
52
, pp.
563
570
.
41.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
,
112
, pp.
333
339
.
42.
Taber
,
L. A.
,
1991
, “
On a Nonlinear Theory for Muscle Shells: Part II—Application to the Beating Left Ventricle
,”
ASME J. Biomech. Eng.
,
113
, pp.
63
71
.
43.
Puso
,
M. A.
, and
Weiss
,
J. A.
,
1998
, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng.
,
120
, pp.
62
70
.
44.
Drost
,
M. R.
,
Willems
,
P.
,
Snijders
,
H.
,
Huyghe
,
J. M.
,
Janssen
,
J. D.
, and
Huson
,
A.
,
1995
, “
Confined Compression of Canine Annulus Fibrosus Under Chemical and Mechanical Loading
,”
ASME J. Biomech. Eng.
,
117
, pp.
390
396
.
45.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Annulus Fibrosus in Compression
,”
J. Biomech.
,
31
, pp.
535
544
.
46.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus, Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
,
24
, pp.
2449
2455
.
47.
Seroussi
,
R. E.
,
Krag
,
M. H.
,
Muller
,
D. L.
, and
Pope
,
M. H.
,
1989
, “
Internal Deformations of Intact and Denucleated Human Lumbar Discs Subjected to Compression, Flexion, and Extension Loads
,”
J. Orthop. Res.
,
7
, pp.
122
131
.
You do not currently have access to this content.