Clinical studies using transcranial Doppler ultrasonography in patients with mechanical heart valves (MHV) have detected gaseous emboli. The relationship of gaseous emboli release and cavitation on MHV has been a subject of debate in the literature. To study the influence of cavitation and gas content on the formation and growth of stable gas bubbles, a mock circulatory loop, which employed a Medtronic-Hall pyrolytic carbon disk valve in the mitral position, was used. A high-speed video camera allowed observation of cavitation and gas bubble release on the inflow valve surfaces as a function of cavitation intensity and carbon dioxide CO2 concentration, while an ultrasonic monitoring system scanned the aortic outflow tract to quantify gas bubble production by calculating the gray scale levels of the images. In the absence of cavitation, no stable gas bubbles were formed. When gas bubbles were formed, they were first seen a few milliseconds after and in the vicinity of cavitation collapse. The volume of the gas bubbles detected in the aortic track increased with both increased CO2 and increased cavitation intensity. No correlation was observed between O2 concentration and bubble volume. We conclude that cavitation is an essential precursor to stable gas bubble formation, and CO2, the most soluble blood gas, is the major component of stable gas bubbles. [S0148-0731(00)00204-1]

1.
Grosset
,
D. G.
,
Georgiadis
,
D.
,
Kelman
,
A. W.
, and
Lees
,
K. R.
,
1993
, “
Quantification of Ultrasound Emboli Signals in Patients With Cardiac and Carotid Disease
,”
Stroke
,
24
, pp.
1922
1924
.
2.
Eftedal
,
O.
, and
Brubakk
,
A.
,
1993
, “
Detecting Intravascular Bubbles in Ultrasonic Images
,”
Med. Biol. Eng. Comput.
,
31
, pp.
627
633
.
3.
Reisner
,
S.
,
Rinkevich
,
D.
,
Markiewicz
,
W.
,
Adler
,
Z.
, and
Milo
,
S.
,
1992
, “
Spontaneous Echocardiographic Contrast With the Carbomedics Mitral Valve Prosthesis
,”
Am. J. Cardiol.
,
70
, pp.
1497
1500
.
4.
Orsinelli
,
D.
,
Pasierski
,
T.
, and
Pearson
,
A.
,
1994
, “
Spontaneously Appearing Microbubbles Associated With Prosthetic Cardiac Valves Detected by Transophagael Echocardiography
,”
Am. Heart J.
,
128
, No.
5
, pp.
990
996
.
5.
Brakken
,
S.
,
Russel
,
D.
,
Brucher
,
R.
, and
Svennevig
,
J.
,
1995
, “
Incidence and Frequency of Cerebral Embolic Signals in Patients in a Similar Bileaflet Mechanical Heart Valves
,”
Stroke
,
27
, No.
7
, pp.
1225
1230
.
6.
Dauzat
,
M.
,
Deklunder
,
G.
,
Aldis
,
A.
,
Robinovitch
,
M.
,
Burte
,
F.
, and
Bret
,
P.
,
1994
, “
Gas Bubble Emboli Detected by Transcranial Doppler Sonography in Patients With Prosthetic Heart Valves: A Preliminary Report
,”
J. Ultrasound Med.
,
13
, pp.
129
135
.
7.
Georgiadis
,
D.
,
Grosset
,
D.
,
Kelman
,
A.
,
Faichney
,
A.
, and
Lees
,
K.
,
1994
, “
Prevalence and Characteristics of Intracranial Microemboli Signals in Patients With Different Types of Prosthetic Cardiac Valves
,”
Stroke
,
25
, No.
3
, pp.
587
592
.
8.
Biancucci
,
B.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
,
1999
, “
In Vitro Studies of Gas Bubble Formation by Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
8
, pp.
186
196
.
9.
Anderson
,
R. M.
,
Ritz
,
J. M.
, and
O’Hare
,
J. G.
,
1965
, “
Pulmonary Air Emboli During Cardiac Surgery
,”
J. Thorac. Cardiovasc. Surg.
,
49
, pp.
440
449
.
10.
Heppner
,
F.
,
1952
, “
Air Embolism Eight Hours After Ventriculography
,”
Acta Radiol.
,
38
, pp.
294
298
.
11.
Nicols
,
H. T.
,
Morse
,
D. R.
, and
Hirose
,
T.
,
1958
, “
Coronary and Other Air Embolism Occurring During Open-Heart Surgery
,”
Surgery
,
43
, pp.
236
244
.
12.
Starr
,
A.
,
1960
, “
The Mechanism and Prevention of Air Embolus During Correction of Congenital Cleft Nutral Valve
,”
J. Thorac. Cardiovasc. Surg.
,
39
, pp.
808
814
.
13.
Hill, L., and Greenwood, M., 1910, “On the Formation of Bubbles in the Vessels of Animal Submitted to a Partial Vacuum,” J. Physiol. 39, p. xxii.
14.
Harris
,
M.
,
Berg
,
W. E.
,
Whitaker
,
D. M.
, and
Twitty
,
V. C.
,
1945
, “
The Relation of Exercise to Bubble Formation in Animals Decompressed to Sea Level From High Parametric Pressure
,”
J. Gen. Physiol.
,
28
, pp.
241
251
.
15.
Harvey
,
Z. N.
,
1945
, “
Decompression Sickness and Bubble Formation in Blood and Tissues
,”
Acad. Med., Bull. NY
,
21
, pp.
205
536
.
16.
Yang
,
W.
, and
Chan
,
K.
,
1969
, “
Survey of Literature Related to the Problems of Gas Embolism in Human Body
,”
J. Biomech.
,
2
, pp.
299
312
.
17.
Elliot, D., and Hallenbeck, J., 1975, “The Pathophysiology of Decompression Sickness,” in: Physiology and Medicine of Diving, 2nd ed., Chap. 23, Bennet, P., ed., London, Bailliere Tindall.
18.
Moore
,
R. M.
, and
Braselton
,
C. W.
, Jr.
,
1940
, “
Injection of Air and of Carbon Dioxide Into Pulmonary Vein
,”
Ann. Surg.
,
112
, pp.
212
218
.
19.
Nun
,
J.
,
1959
, Letter to Editor,
Anesthesia
,
14
, p.
413
413
.
20.
Munson
,
E. S.
, and
Merrich
,
H. C.
,
1966
, “
Effects of Nitrous Oxide on Venous Air Embolism
,”
Anesthesiology
,
27
, pp.
783
787
.
21.
Lamson
,
T.
,
Stinebring
,
D.
,
Deutsch
,
S.
,
Rosenberg
,
G.
, and
Tarbell
,
J.
,
1991
, “
Real Time in Vitro Observation of Cavitation in a Prosthetic Heart Valve
,”
ASAIO Trans.
,
37
, pp.
M351–M353
M351–M353
.
22.
Graf
,
T.
,
Fischer
,
H.
,
Detlefs
,
C.
,
Wilmes
,
R.
, and
Rau
,
G.
,
1991
, “
Cavitation Potential of Mechanical Heart Prostheses
,”
Int. J. Artif. Organs
,
14
, pp.
169
174
.
23.
Chandran
,
K. B.
,
Lee
,
C. S.
, and
Chen
,
L. D.
,
1994
, “
Pressure Field in the Vicinity of Mechanical Valve Occluders at the Instant of Valve Closure: Correlation With Cavitation Initiation
,”
J. Heart Valve Dis.
, (Suppl. I),
3
, pp.
S65–S86
S65–S86
.
24.
Garrison, L., 1994, “Hemolytic Effects of Chemical Additives, Aortic Pressure Changes, and Cavitation in Two New Mock Circulatory Loops Driven by the Penn State Ventricular Assist Device,” Ph.D. thesis, Bioengineering, The Pennsylvania State University, University Park, PA.
25.
Garrison
,
L.
,
Lamson
,
T.
,
Deutsch
,
S.
,
Geselowitz
,
D.
,
Gaumond
,
R.
, and
Tarbell
,
J.
,
1994
, “
An In-Vitro Investigation of Prosthetic Heart Valve Cavitation in Blood
,”
J. Heart Valve Dis.
,
3
, pp.
S8–S24
S8–S24
.
26.
Zapanta
,
C.
,
Liszka
,
E.
,
Lamson
,
T.
,
Stinebring
,
D.
,
Deutsch
,
S.
,
Geselowitz
,
D.
, and
Tarbell
,
J.
,
1994
, “
A Method for Real-Time in Vitro Observation of Cavitation on Prosthetic Heart Valves
,”
ASME J. Biomech. Eng.
,
116
, pp.
450
468
.
27.
Wu
,
Z. J.
,
Gao
,
B. Z.
, and
Hwang
,
H. H. C.
,
1995
, “
Transient Pressure at Closing of a Monoleaflet Mechanical Heart Valve Prosthesis: Mounting Compliance Effect
,”
J. Heart Valve Dis.
,
4
, pp.
553
567
.
28.
Sneckenberger
,
D. S.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
,
1996
, “
Mitral Health Valve Cavitation in an Artificial Heart Environment
,”
J. Heart Valve Dis.
,
5
, pp.
216
227
.
29.
Zapanta
,
C. M.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
,
1998
, “
A Comparison of the Cavitation Potential of Prosthetic Heart Valves Based on Valve Closing Dynamics
,”
J. Heart Valve Dis.
,
7
, No.
6
, pp.
655
667
.
30.
Kafesjian
,
R.
,
Howanec
,
R.
,
Ward
,
G. D.
,
Diep
,
L.
,
Wagstaff
,
L. S.
, and
Rhee
,
R.
,
1994
, “
Cavitation Damage of Pyrolytic Carbon in Mechanical Heart Valves
,”
J. Heart Valve Dis.
(Suppl. 1),
3
, pp.
S2–S7
S2–S7
.
31.
Young, F. R., 1989, Cavitation, McGraw-Hill, New York.
32.
Altmann, P., and Dittmer, S., 1971, Respiration and Circulation, Federation of American Societies for Experimental Biology, Bethesda, MD.
33.
Georgiadis
,
D.
,
Wenzel
,
A.
,
Lehmann
,
D.
,
Lindner
,
A.
,
Zerkowski
,
H. R.
,
Ziera
,
S.
, and
Spencer
,
M. P.
,
1997
, “
Influence of Oxygen Ventilation on Doppler Microemboli Signals in Patients With Artificial Heart Valves
,”
Stroke
,
28
, pp.
2189
2194
.
34.
Droste
,
D. W.
,
Hansberg
,
T.
,
Kemeny
,
V.
,
Hammel
,
D.
,
Schulte-Altedorneburg
,
G.
,
Nabavi
,
D. G.
,
Kaps
,
M.
,
Scheld
,
H. H.
, and
Ringelstein
,
E. B.
,
1997
, “
Oxygen Inhalation Can Differentiate Gaseous From Nongaseous Microemboli Detected by Transcranial Doppler Ultrasound
,”
Stroke
,
28
, No.
12
, pp.
2453
2456
.
You do not currently have access to this content.