Thermal therapy of benign prostatic hyperplasia requires accurate prediction of the temperature distribution induced by the heating within the prostatic tissue. In this study, the Pennes bioheat transfer equation was used to model the transient heat transfer inside the canine prostate during transurethral microwave thermal therapy. Incorporating the specific absorption rate of microwave energy in tissue, a closed-form analytical solution was obtained. Good agreement was found between the theoretical predictions and in-vivo experimental results. Effects of blood perfusion and the cooling at the urethral wall on the temperature rise were investigated within the prostate during heating. The peak intraprostatic temperatures attained by application of 5, 10, or 15 W microwave power were predicted to be 38°C,41°C, and 44°C. Results from this study will help optimize the thermal dose that can be applied to target tissue during the therapy. [S0148-0731(00)01004-9]

1.
Astrahan
,
V. W.
,
Sapozink
,
M. D.
,
Cohen
,
D.
,
Luxton
,
G.
,
Kampp
,
T. D.
,
Boyd
,
S.
, and
Petrovich
,
Z.
,
1989
, “
Microwave Applicator Transurethral Hyperthermia of Benign Prostatic Hyperplasia
,”
Int. J. Hyperthermia
,
5
, pp.
283
296
.
2.
Baert
,
L.
,
Ameye
,
F.
,
Willemen
,
P.
,
Vandenhove
,
J.
,
Lauweryns
,
J.
,
Astrahan
,
M. A.
, and
Petrovich
,
Z.
,
1990
, “
Transurethral Microwave Hyperthermia for Benign Prostatic Hyperplasia: Preliminary Clinical and Pathological Results
,”
J. Urol. (Baltimore)
,
144
, pp.
1383
1387
.
3.
Bdesha
,
A. S.
,
Bunce
,
C. J.
,
Kelleher
,
J. P.
,
Shell
,
M. E.
,
Vukusic
,
J.
, and
Witherow
,
R. O’N
,
1993
, “
Transurethral Microwave Treatment for Benign Prostatic Hypertrophy: a Randomized Controlled Clinical Trial
,”
Br. Med. J.
,
306
, pp.
1293
1296
.
4.
Homma
,
Y.
, and
Aso
,
Y.
,
1993
, “
Transurethral Microwave Thermotherapy for Benign Prostatic Hyperplasia: a 2-Year Follow-Up Study
,”
J. Endourology
,
7
, pp.
261
265
.
5.
Larson
,
T. R.
,
Bostwick
,
D. G.
, and
Corica
,
A.
,
1996
, “
Temperature-Correlated Histopathologic Changes Following Microwave Thermoablation of Obstructive Tissue in Patients With Benign Prostatic Hyperplasia
,”
Urol.
,
47
, pp.
463
469
.
6.
Marteinsson
,
V. T.
, and
Due
,
J.
,
1994
, “
Transurethral Microwave Thermotherapy for Uncomplicated Benign Prostatic Hyperplasia
,”
Scand. J. Urol. Nephrol.
,
28
, pp.
83
82
.
7.
de la Rosette
,
J. J. M. C. H.
,
Froeling
,
F. M. J. A.
, and
Debruyne
,
F. M. J.
,
1993
, “
Clinical Results With Microwave Thermotherapy of Benign Prostatic Hyperplasia
,”
Eur. Urol.
,
23
, (suppl. 1), pp.
68
71
.
8.
Sapozink
,
M. D.
,
Boyd
,
S. D.
,
Astrahan
,
M. A.
,
Jozaef
,
G.
, and
Petrovich
,
Z.
,
1990
, “
Transurethral Hyperthermia for Benign Prostatic Hyperplasia: Preliminary Clinical Results
,”
J. Urol. (Baltimore)
,
143
, pp.
944
950
.
9.
Martin
,
G. T.
,
Haddad
,
M. G.
,
Cravalho
,
E. G.
, and
Bowman
,
H. F.
,
1992
, “
Thermal Model for the Local Microwave Hyperthermia Treatment of Benign Prostatic Hyperplasia
,”
IEEE Trans. Biomed. Eng.
,
39
, pp.
836
844
.
10.
Xu, L. X., Rudie, E., and Holmes, K. R., 1993, “Transurethral Thermal Therapy (T3) for the Treatment of Benign Prostatic Hyperthermia (BPH) in the Canine: Analysis Using Pennes’ Bioheat Transfer,” in: Advances in Heat and Mass Transfer in Biotechnology, ASME HTD-Vol. 268, pp. 31–35.
11.
Yuan, D. Y., Valvano, J. W., Rudie, E. N., and Xu, L. X., 1995, “2-D Finite Difference Modeling of Microwave Heating in the Prostate,” in: Advances in Heat and Mass Transfer in Biotechnology, ASME HTD-Vol. 322/BED-Vol. 32, pp. 107–113.
12.
Zhu
,
L.
,
Xu
,
L. X.
, and
Chencinski
,
N.
,
1998
, “
Quantification of the 3-D Electromagnetic Power Absorption Rate in Tissue During Transurethral Prostatic Microwave Thermotherapy Using Heat Transfer Model
,”
IEEE Trans. Biomed. Eng.
,
45
, pp.
1163
1172
.
13.
Patel
,
U. H.
, and
Babbs
,
C. F.
,
1993
, “
Development of a Rapidly Computable Descriptor of Prostate Tissue Temperature During Transurethral Conductive Heat Therapy for the Benign Prostate Hyperplasia
,”
Med. Biol. Eng. Comput.
,
31
, pp.
475
481
.
14.
Loyd
,
D.
,
Karlsson
,
M.
,
Erlandsson
,
B. E.
,
Sjodin
,
J. G.
, and
Ask
,
P.
,
1997
, “
Computer Analysis of Hyperthermia Treatment of the Prostate
,”
Adv. Eng. Softw.
,
28
, pp.
347
351
.
15.
Sturesson
,
C.
, and
Engels
,
S. A.
,
1996
, “
Theoretical Analysis of Transurethral Laser-Induced Thermotherapy for Treatment of Benign Prostatic Hyperplasia: Evaluation of a Water-Cooled Applicator
,”
Phys. Med. Biol.
,
41
, pp.
445
463
.
16.
Bigler
,
S. A.
,
Deering
,
R. E.
, and
Brawer
,
M. K.
,
1993
, “
Comparison of Microscopic Vascularity in Benign and Malignant Prostate Tissue
,”
Hum. Pathol.
,
24
, pp.
220
226
.
17.
Nissenkorn
,
I.
, and
Meshorer
,
A.
,
1993
, “
Temperature Measurements and Histology of the Canine Prostate During Transurethral Hyperthermia
,”
J. Urol. (Baltimore)
,
149
, pp.
1613
1616
.
18.
Xu, L. X., 1999, “New Development in Bioheat and Mass Transfer Modeling,” in: Annual Review of Heat Transfer, Chang-Lin Tien, ed., X, Chap. 1, Begell House, New York.
19.
Ozisik, M. N., 1993, Heat Conduction, 2nd ed., Wiley New York.
20.
Xu
,
L. X.
,
Zhu
,
L.
, and
Holmes
,
K. R.
,
1998
, “
Thermoregulation in the Canine Prostate During Transurethral Microwave Hyperthermia, Part I: Temperature Response
,”
Int. J. Hyperthermia
,
14
, pp.
29
37
.
21.
Arkin
,
H.
,
Holmes
,
K. R.
, and
Chen
,
M. M.
,
1986
, “
A Sensitivity Analysis of the Thermal Pulse Decay Method for Measurement of Local Tissue Conductivity and Blood Perfusion
,”
ASME J. Biomech. Eng.
,
108
, pp.
54
58
.
22.
Chato, J. C., 1991, “Fundamentals of Bioheat Transfer,” in: Thermal Dosimetry and Treatment Planning, Gautherie, M., ed., Springer-Verlag, New York, Chap. 1.
23.
Xu, L. X., Zhu, L., and Holmes, K. R., 1998, “Blood Perfusion Measurements in the Canine Prostate During Transurethral Hyperthermia,” in: Annals of New York Academia of Sciences, Diller, K. R., ed., 858, Chap. 2, pp. 21–29.
24.
Zhu, L., Xu, L. X., Yuan, D. Y., and Rudie, E. N., 1996, “Electromagnetic (EM) Quantification of the Microwave Antenna for the Transurethral Prostatic Thermotherapy,” in: Advances in Heat and Mass Transfer in Biotechnology, ASME HTD-Vol. 337/BED-Vol. 34, pp. 17–20.
25.
Henriques
,
F. C.
, and
Moritz
,
A. R.
,
1947
, “
Studies of Thermal Injury, I. The Conduction of Heat to and Through Skin and the Temperatures Attained Therein: A Theoretical and an Experimental Investigation
,”
Am. J. Pathol.
,
23
, pp.
531
549
.
26.
Pearce, J., Liao, W. H., and Thomsen, S., 1998, “The Kinetics of Thermal Damage: Estimation and Evaluation of Model Coefficients,” in: Advances in Heat and Mass Transfer in Biotechnology, ASME HTD-Vol. 362/BED-Vol. 40, pp. 71–75.
27.
Bhowmick, S., and Bischof, J. C., 1998, “Supraphysiological Thermal Injury in Dunning AT-1 Prostate Tumor Cells,” in: Advances in Heat and Mass Transfer in Biotechnology, ASME HTD-Vol. 362/BED-Vol. 40, pp. 77–78.
28.
Moritz
,
A. R.
, and
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury II: the Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
,
23
, pp.
695
720
.
29.
Diller, K. R., and Klutke, G. A., 1993, “Accuracy of the Henriques Model for Predicting Thermal Burn Injury,” in: Advances in Bioheat and Mass Transfer, ASME HTD-Vol. 268, pp. 117–123.
30.
Torvi
,
D. A.
, and
Dale
,
J. D.
,
1994
, “
A Finite Element Model of Skin Subjected to a Flash Fire
,”
ASME J. Biomech. Eng.
,
116
, pp.
250
255
.
31.
Xu
,
Y.
, and
Qian
,
R.
,
1995
, “
Analysis of Thermal Injury Process Based on Enzyme Deactivation Mechanisms
,”
ASME J. Biomech. Eng.
,
117
, pp.
462
465
.
32.
Weinbaum
,
S.
,
Jiji
,
L. M.
, and
Lemons
,
D. E.
,
1984
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part I: Anatomical Foundation and Model Conceptualization
,”
ASME J. Biomech. Eng.
,
106
, pp.
321
330
.
You do not currently have access to this content.