Bicycle pedaling has been studied from both a motor control and an equipment setup and design perspective. In both cases, although the dynamics of the bicycle drive system may have an influence on the results, a thorough understanding of the dynamics has not been developed. This study pursued three objectives related to developing such an understanding. The first was to identify the limitations of the inertial/frictional drive system model commonly used in the literature. The second was to investigate the advantages of an inertial/frictional/compliant model. The final objective was to use these models to develop a methodology for configuring a laboratory ergometer to emulate the drive system dynamics of road riding. Experimental data collected from the resulting road-riding emulator and from a standard ergometer confirmed that the inertial/frictional model is adequate for most studies of road-riding mechanics or pedaling coordination. However, the compliant model was needed to reproduce the phase shift in crank angle variations observed experimentally when emulating the high inertia of road riding. This finding may be significant for equipment setup and design studies where crank kinematic variations are important or for motor control studies where fine control issues are of interest. [S0148-0731(00)02004-5]

1.
Coast
,
R. J.
, and
Welch
,
H. G.
,
1985
, “
Linear Increase in Optimal Pedal Rate With Increased Power Output in Cycle Ergometry
,”
Eur. J. Appl. Physiol.
,
53
, pp.
339
342
.
2.
Henderson
,
S. C.
,
Ellis
,
R. W.
,
Klimovitch
,
G.
, and
Brooks
,
G. A.
,
1977
, “
The Effects of Circular and Elliptical Chainwheels on Steady-Rate Cycle Ergometer Work Efficiency
,”
Med. Sci. Sports
,
9
, pp.
202
207
.
3.
Kautz
,
S. A.
,
Feltner
,
M. E.
,
Coyle
,
E. F.
, and
Baylor
,
A. M.
,
1991
, “
The Pedaling Technique of Elite Endurance Cyclists: Changes With Increasing Workload at Constant Cadence
,”
Int. J. Sport Biomech.
7
, pp.
229
253
.
4.
Billat
,
V. L.
,
Richard
,
R.
,
Binsse
,
V. M.
,
Koralsztein
,
J. P.
, and
Haouzi
,
P.
,
1998
, “
The VO2 Slow Component for Severe Exercise Depends on Type of Exercise and Is Not Correlated With Time to Fatigue
,”
J. Appl. Physiol.
,
85
, pp.
2118
2124
.
5.
Patterson
,
R. P.
, and
Moreno
,
M. I.
,
1990
, “
Bicycle Pedalling Forces as a Function of Pedalling Rate and Power Output
,”
Med. Sci. Sports Exerc.
,
22
, pp.
512
516
.
6.
Takaishi
,
T.
,
Yasuda
,
Y.
, and
Moritani
,
T.
,
1994
, “
Neuromuscular Fatigue During Prolonged Pedalling Exercise at Different Pedalling Rates
,”
Eur. J. Appl. Physiol.
,
69
, pp.
154
158
.
7.
Bolourchi
,
F.
, and
Hull
,
M. L.
,
1985
, “
Measurement of Rider Induced Loads During Simulated Bicycling
,”
Int. J. Sport Biomech.
,
1
, pp.
308
329
.
8.
Hull
,
M. L.
, and
Jorge
,
M.
,
1985
, “
A Method for Biomechanical Analysis of Bicycle Pedalling
,”
J. Biomech.
,
18
, pp.
631
644
.
9.
Nordeen-Snyder
,
K. S.
,
1977
, “
The Effect of Bicycle Seat Height Variation Upon Oxygen Consumption and Lower Limb Kinematics
,”
Med. Sci. Sports Exerc.
,
9
, pp.
113
117
.
10.
Hull
,
M. L.
,
Williams
,
M.
,
Williams
,
K.
, and
Kautz
,
S.
,
1992
, “
Physiological Response to Cycling With Both Circular and Noncircular Chainrings
,”
Med. Sci. Sports Exerc.
,
24
, pp.
1114
1122
.
11.
Marsh
,
A. P.
, and
Martin
,
P. E.
,
1995
, “
The Relationship Between Cadence and Lower Extremity EMG in Cyclists and Noncyclists
,”
Med. Sci. Sports Exerc.
,
27
, pp.
217
225
.
12.
Ruby
,
P.
,
Hull
,
M. L.
, and
Hawkins
,
D.
,
1992
, “
Three-Dimensional Knee Joint Loading During Seated Cycling
,”
J. Biomech.
,
25
, pp.
41
53
.
13.
Hagberg
,
J. M.
,
Mullin
,
J. P.
,
Giese
,
M. D.
, and
Spitznagel
,
E.
,
1981
, “
Effect of Pedaling Rate on Submaximal Exercise Responses of Competitive Cyclists
,”
J. Appl. Physiol.
,
51
, pp.
447
451
.
14.
Stone
,
C.
, and
Hull
,
M. L.
,
1993
, “
Rider/Bicycle Interaction Loads During Standing Treadmill Cycling
,”
J. Appl. Biomech.
,
9
, pp.
202
218
.
15.
Swain
,
D. P.
, and
Wilcox
,
J. P.
,
1992
, “
Effect of Cadence on the Economy of Uphill Cycling
,”
Med. Sci. Sports Exerc.
,
24
, pp.
1123
1127
.
16.
Tanaka
,
H.
,
Bassett
, Jr.,
D. R.
,
Best
,
S. K.
, and
Baker
, Jr.,
K. R.
,
1996
, “
Seated Versus Standing Cycling in Competitive Road Cyclists: Uphill Climbing and Maximal Oxygen Uptake
,”
Can. J. Appl. Physiol.
,
21
, pp.
149
154
.
17.
Gonzalez
,
H.
, and
Hull
,
M. L.
,
1989
, “
Multivariable Optimization of Cycling Biomechanics
,”
J. Biomech.
,
22
, pp.
1151
1161
.
18.
Yoshihuku
,
Y.
, and
Herzog
,
W.
,
1990
, “
Optimal Design Parameters of the Bicycle-Rider System for Maximal Muscle Power Output
,”
J. Biomech.
,
23
, pp.
1069
1079
.
19.
Hull
,
M. L.
,
Kautz
,
S. A.
, and
Beard
,
A.
,
1991
, “
An Angular Velocity Profile in Cycling Derived From Mechanical Energy Analysis
,”
J. Biomech.
,
24
, pp.
577
586
.
20.
Kautz
,
S. A.
, and
Hull
,
M. L.
,
1995
, “
Dynamic Optimization Analysis for Equipment Setup Problems in Endurance Cycling
,”
J. Biomech.
,
28
, pp.
1391
1401
.
21.
Miller
,
N. R.
, and
Ross
,
D.
,
1980
, “
The Design of Variable-Ratio Chain Drives for Bicycles and Ergometers—Application to a Maximum Power Bicycle Drive
,”
ASME J. Mech. Des.
,
102
, pp.
711
717
.
22.
Wang
,
E. L.
, and
Hull
,
M. L.
,
1996
, “
A Model for Determining Rider Induced Energy Losses in Bicycle Suspension Systems
,”
Vehicle Syst. Dynam.
25
, pp.
223
246
.
23.
Citterio
,
G.
, and
Agostoni
,
E.
,
1984
, “
Selective Activation of Quadriceps Muscle Fibers According to Bicycling Rate
,”
J. Appl. Physiol.
,
57
, pp.
371
379
.
24.
Duchateau
,
J.
,
Le Bozec
,
S.
, and
Hainaut
,
K.
,
1986
, “
Contributions of Slow and Fast Muscles of Triceps surae to a Cyclic Movement
,”
Eur. J. Appl. Physiol.
,
55
, pp.
476
481
.
25.
Suzuki
,
S.
,
Watanabe
,
S.
, and
Homma
,
S.
,
1982
, “
EMG Activity and Kinematics of Human Cycling Movements at Different Constant Velocities
,”
Brain Res.
,
240
, pp.
245
258
.
26.
Gregor
,
R. J.
,
Komi
,
P. V.
,
Browning
,
R. C.
, and
Ja¨rvinen
,
M.
,
1991
, “
A Comparison of the Triceps surae and Residual Muscle Moments at the Ankle During Cycling
,”
J. Biomech.
,
24
, pp.
2287
2297
.
27.
Jorge
,
M.
, and
Hull
,
M. L.
,
1986
, “
Analysis of EMG Measurement During Bicycle Pedalling
,”
J. Biomech.
,
19
, pp.
683
694
.
28.
Fregly
,
B. J.
,
Zajac
,
F. E.
, and
Dairaghi
,
C. A.
,
1996
, “
Crank Inertial Load Has Little Effect on Steady-State Pedaling Coordination
,”
J. Biomech.
,
29
, pp.
1559
1567
.
29.
Lo¨llgen
,
H.
,
Ulmer
,
H.-V.
,
Gross
,
R.
,
Wilbert
,
G.
, and
van Nieding
,
G.
,
1975
, “
Methodical Aspects of Perceived Exertaion Rating and Its Relation to Pedalling Rate and Rotating Mass
,”
Eur. J. Appl. Physiol.
,
34
, pp.
205
215
.
30.
Patterson
,
R. P.
, and
Pearson
,
J. L.
,
1983
, “
The Influence of Flywheel Weight and Pedalling Frequency on the Biomechanics and Physiological Responses to Bicycle Exercise
,”
Ergonomics
,
26
, pp.
659
668
.
31.
Fregly
,
B. J.
, and
Zajac
,
F. E.
,
1996
, “
A State-Space Analysis of Mechanical Energy Generation, Absorption, and Transfer During Pedaling
,”
J. Biomech.
,
29
, pp.
81
90
.
32.
Neptune
,
R. R.
, and
Hull
,
M. L.
,
1998
, “
Evaluation of Performance Criteria for Simulation of Submaximal Steady-State Cycling Using a Forward Dynamic Model
,”
ASME J. Biomech. Eng.
,
120
, pp.
334
340
.
33.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
,
1997
, “
Muscle Coordination of Maximum-Speed Pedaling
,”
J. Biomech.
,
30
, pp.
595
602
.
34.
Fregly, B. J., 1993, “The Significance of Crank Load Dynamics to Steady-State Pedaling Biomechanics: an experimental and Computer Modeling Study,” Ph.D. dissertation, Stanford University, Stanford, CA.
35.
Fregly, B. J., and Zajac, F. E., 1989, “A Dynamical, Two-Legged Biomechanical Model to Study the Neuromuscular Control of Pedaling,” in: Issues in the Modeling and Control of Biomechanical Systems, Stein, J. L., Ashton-Miller, J. A., and Pandy, M. G., eds., ASME DSC-Vol. 17, pp. 29–33.
36.
Whitt, F. R., and Wilson, D. G., 1990, Bicycling Science, MIT Press, Cambridge, MA.
37.
Martin
,
J. C.
,
Milliken
,
D. L.
,
Cobb
,
J. E.
,
McFadden
,
K. L.
, and
Coggan
,
A. R.
,
1998
, “
Validation of a Mathematical Model for Road Cycling Power
,”
J. Appl. Biomech.
,
14
, pp.
276
291
.
38.
Newmiller
,
J.
,
Hull
,
M. L.
, and
Zajac
,
F. E.
,
1988
, “
A Mechanically Decoupled Two Force Component Bicycle Pedal Dynamometer
,”
J. Biomech.
,
21
, pp.
375
386
.
39.
Winter, D. A. 1979, Biomechanics of Human Movement, J Wiley, New York.
40.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale, Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
,
114
, pp.
450
460
.
41.
Sargeant, B., 1999, Personal communication regarding inertial properties of the Velodyne trainer.
You do not currently have access to this content.