Bone is a very dynamic tissue capable of modifying its composition, microstructure, and overall geometry in response to the changing biomechanical needs. Streaming potential has been hypothesized as a mechanotransduction mechanism that may allow osteocytes to sense their biomechanical environment. A correct understanding of the mechanism for streaming potential will illuminate our understanding of bone remodeling, such as the remodeling associated with exercise hypertrophy, disuse atrophy, and the bone remodeling around implants. In the current research, a numerical model based on the finite element discretization is proposed to simulate the fluid flows through the complicated hierarchical flow system and to calculate the concomitant stress generated potential (SGP) as a result of applied mechanical loading. The lacunae–canaliculi and the matrix microporosity are modeled together as discrete one-dimensional flow channels superposed in a biphasic poroelastic matrix. The cusplike electric potential distribution surrounding the Haversian canal that was experimentally observed and reported in the literature earlier was successfully reproduced by the current numerical calculation.

1.
Yasuda
,
I.
,
1954
, “
On the Piezoelectric Activity of Bone
,”
J. Jap. Orthop. Surg. Soc.
,
28
, pp.
267
269
.
2.
Fukada
,
E.
, and
Yasuda
,
I.
,
1957
, “
On the Piezoelectric Effect of Bone
,”
J. Phys. Soc. Jpn.
,
10
, pp.
1158
1169
.
3.
Bassett
,
C. A. L.
, and
Becker
,
R. O.
,
1962
, “
Generation of Electric Potentials by Bone in Response to Mechanical Stress
,”
Science
,
137
, pp.
1063
1064
.
4.
Gross
,
D.
, and
Williams
,
W. S.
,
1982
, “
Streaming Potential and the Electromechanical Response of Physiologically Moist Bone
,”
J. Biomech.
,
15
, pp.
277
295
.
5.
Peinkowski
,
D.
, and
Pollack
,
S. R.
,
1983
, “
The Origin of Stress-Generated Potentials in Fluid-Saturated Bone
,”
J. Orthop. Res.
,
1
, pp.
30
41
.
6.
Johnson
,
M. W.
,
Chakalakal
,
D. A.
,
Harper
,
R.
,
Katz
,
J. L.
, and
Rouhana
,
S. W.
,
1982
, “
Fluid Flow in Bone in Vitro
,”
J. Biomech.
,
15
, No.
11
, pp.
881
885
.
7.
Pollack, S. R., Korostoff, E., Starkebaum, W., and Iannicone, W., 1979, “Microelectrode Studies of Stress Generated Potentials in Bone, ” in: Electrical Properties of Bone and Cartilage, C. T. Brighton, J. Black, and S. R. Pollack, eds., Grune and Stratton, New York, pp. 69–81.
8.
Seliger
,
W. G.
,
1970
, “
Tissue Fluid Movement in Compact Bone
,”
Anat. Rec.
,
166
, pp.
247
256
.
9.
Dillaman
,
R. M.
,
1984
, “
Movement of Ferritin in 2-Day-Old Chick Femur
,”
Anat. Rec.
,
209
, pp.
445
453
.
10.
Montgomery
,
R. J.
,
Sutker
,
B. D.
,
Bronk
,
J. T.
,
Smith
,
S. R.
, and
Kelly
,
P. J.
,
1988
, “
Interstitial Fluid Flow in Cortical Bone
,”
Microvasc. Res.
,
33
, pp.
295
307
.
11.
Otter
,
M. W.
,
Palmieri
,
V. R.
, and
Cochran
,
G. V. B.
,
1990
, “
Transcortical Streaming Potentials Are Generated by Circulatory Pressure Gradients in Living Canine Tibia
,”
J. Orthop. Res.
,
8
, pp.
119
126
.
12.
Knothe Tate
,
M. L.
,
Niederer
,
P.
, and
Knothe
,
U.
,
1998
, “
In Vivo Tracer Transport Though the Lacunocanalicular System of Rat Bone in an Environment Devoid of Mechanical Loading
,”
Bone
,
22
, No.
2
, pp.
107
117
.
13.
Knothe Tate
,
M. L.
,
Niederer
,
P.
, and
Forwood
,
M.
,
1997
, “
In Vivo Observation of Load-Induced Fluid Displacements Using Procion Red and Microperoxidase Tracers in the Rat Tibia
,”
J. Bone Miner. Res.
,
12
, Suppl. 1, p.
F641
F641
.
14.
Salzstein
,
R. A.
,
Pollack
,
S. R.
,
Mak
,
A. F. T.
, and
Petrov
,
N.
,
1987
, “
Electromechanical Potentials in Cortical Bone—I. A Continuum Approach
,”
J. Biomech.
,
20
, No.
3
, pp.
261
270
.
15.
Petrov
,
N.
,
Pollack
,
S.
, and
Blagoeva
,
R.
,
1989
, “
A Discrete Model for Streaming Potentials in a Single Osteon
,”
J. Biomech.
,
22
, pp.
517
521
.
16.
Pollack
,
S. R.
,
Petrov
,
N.
,
Salzstein
,
R. S.
,
Brnakov
,
G.
, and
Blagoeva
,
R.
,
1984
, “
An Anatomical Model for Streaming Potentials in Osteons
,”
J. Biomech.
,
17
, pp.
627
636
.
17.
Kufahl
,
R. H.
, and
Saha
,
S.
,
1990
, “
A Theoretical Model for Stress-Generated Fluid Flow in the Canaliculi–Lacunae Network in Bone Tissue
,”
J. Biomech.
,
23
, pp.
171
180
.
18.
Cowin
,
S. C.
,
Weinbaum
,
S.
, and
Zeng
,
Y.
,
1995
, “
A Case for Bone Canaliculi as the Anatomical Site for Strain Generated Potentials
,”
J. Biomech.
,
28
, No.
11
, pp.
1281
1297
.
19.
Weinbaum
,
S.
,
Cowin
,
S. C.
, and
Zeng
,
Y.
,
1994
, “
A Model for the Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stresses,
J. Biomech.
,
27
, No.
3
, pp.
339
360
.
20.
MacGinitie
,
L. A.
,
Seiz
,
K. G.
,
Otter
,
M. W.
, and
Cochran
,
G. V.
,
1994
, “
Streaming Potential Measurements at Low Ionic Concentrations Reflect Bone Microstructure
,”
J. Biomech.
,
27
, No.
7
, pp.
969
978
.
21.
Dillaman
,
R. M.
,
Boer
,
R. D.
, and
Gay
,
D. M.
,
1991
, “
Fluid Movement in Bone: Theoretical and Experimental
,”
J. Biomech.
,
24
, Suppl. 1, pp.
163
177
.
22.
Keanini
,
R. G.
,
Roer
,
R. D.
, and
Dillamen
,
R. M.
,
1995
, “
A Theoretical Model of Circulatory Interstitial Fluid Flow and Species Transport Within Porous Cortical Bone
,”
J. Biomech.
,
28
, pp.
901
914
.
23.
Mak
,
A. F. T.
,
Huang
,
D. T.
,
Zhang
,
J. D.
, and
Tong
,
P.
,
1997
, “
Deformation-Induced Hierarchical Flows and Drag Forces in Bone Canaliculi and Matrix Microporosity
,”
J. Biomech.
,
30
, No.
1
, p.
11
11
.
24.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. H.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
25.
Bowen, R. M., 1976, “Theory of Mixtures,” in: Continuum Physics, Vol. III, A. C. Eringen, ed., Academic Press, New York.
26.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1969
, “
On Basic Equations for Mixtures
,”
Q. J. Mech. Appl. Math.
,
22
, pp.
427
438
.
27.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
, pp.
1482
1498
.
28.
Suh
,
J. K.
,
Spilker
,
R. L.
, and
Holmes
,
M. H.
,
1991
, “
A Penalty Finite Element Analysis for Nonlinear Mechanics of Biphasic Hydrated Soft Tissues Under Large Deformation
,”
Int. J. Numer. Methods Eng.
,
32
, pp.
1411
1439
.
29.
Xue, W. M., Mak, A. F. T., Huang, D. T., Hon, Y. C., and Lu, M. W., 1995, “On the Penalty Method of Stokes Equations and Biphasic Mixture Model of Soft Hydrated Tissues,” in: Contemporary Research in Engineering Science, R. C. Batra, ed., Springer-Verlag, New York, pp. 613 –623.
30.
Shaw, D., 1969, Electrophoresis, Academic Press, New York.
31.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
,
1990
, “
A Finite Element Formulation of the Linear Biphasic Model for Cartilage and Hydrated Soft Tissue: I. Formulation and Validation
,”
ASME J. Biomech. Eng.
,
112
, pp.
138
146
.
32.
Salzstein
,
R. A.
, and
Pollack
,
S. R.
,
1987
, “
Electromechanical Potentials in Cortical Bone — II. Experimental Analysis
,”
J. Biomech.
,
20
, No.
3
, pp.
271
280
.
You do not currently have access to this content.