Various hemodynamic factors have been implicated in vascular graft intimal hyperplasia, the major mechanism contributing to chronic failure of small-diameter grafts. However, a thorough knowledge of the graft flow field is needed in order to determine the role of hemodynamics and how these factors affect the underlying biological processes. Computational fluid dynamics offers much more versatility and resolution than in vitro or in vivo methods, yet computations must be validated by careful comparison with experimental data. Whereas numerous numerical and in vitro simulations of arterial geometries have been reported, direct point-by-point comparisons of the two techniques are rare in the literature. We have conducted finite element computational analyses for a model of an end-to-side vascular graft and compared the results with experimental data obtained using laser-Doppler velocimetry. Agreement for velocity profiles is found to be good, with some clear differences near the recirculation zones during the deceleration and reverse-flow segments of the flow waveform. Wall shear stresses are determined from velocity gradients, whether by computational or experimental methods, and hence the agreement for this quantity, while still good, is less consistent than for velocity itself. From the wall shear stress numerical results, we computed four variables that have been cited in the development of intimal hyperplasia—the time-averaged wall shear stress, an oscillating shear index, and spatial and temporal wall shear stress gradients—in order to illustrate the versatility of numerical methods. We conclude that the computational approach is a valid alternative to the experimental approach for quantitative hemodynamic studies. Where differences in velocity were found by the two methods, it was generally attributed to the inability of the numerical method to model the fluid dynamics when flow conditions are destabilizing. Differences in wall shear, in the absence of destabilizing phenomena, were more likely to be caused by difficulties in calculating wall shear from relatively low resolution in vitro data.

1.
Archie
,
J. P.
,
1994
, “
Femoropopliteal Bypass With Either Adequate Ipsilateral Reversed Saphenous Vein or Obligatory Polytetraflorethylene
,”
Ann. Vasc. Surg.
,
8
, No.
5
pp.
475
484
.
2.
Callow, A. D., 1982, “Historical Overview of Experimental and Clinical Development of Vascular Grafts,” in Biologic and Synthetic Vascular Prostheses, J. C. Stanley et al., eds., Grune & Stratton, New York, pp. 11–26.
3.
Debakey
,
M. E.
,
Lawrie
,
G. M.
, and
Glaeser
,
D. H.
,
1985
, “
Patterns of Atherosclerosis and Their Surgical Significance
,”
Ann. Surg.
,
201, pp.
115
131
.
4.
Taylor
,
R. F.
,
Loh
,
A.
,
McFarland
,
R. J.
,
Cox
,
M.
, and
Chester
,
J. F.
,
1992
, “
Improved Techniques for PTFE Bypass Grafting: Long-Term Results Using Anastomotic Vein Patches
,”
Br. J. Surg.
,
79
, pp.
348
354
.
5.
Chervu
,
A.
, and
Moore
,
W. S.
,
1990
, “
An Overview of Intimal Hyperplasia
,”
Surgery, Gynecology, and Obstetrics
,
171
, pp.
433
447
.
6.
Clowes
,
A. W.
,
Gown
,
A. M.
,
Hanson
,
S. R.
,
Reidy
,
M. A.
,
1985
, “
Mechanisms of Arterial Graft Failure: 1. Role of Cellular Proliferation in Early Healing of PTFE Prostheses
,”
Am. J. Pathol.
,
118
, pp.
43
54
.
7.
Sottiurai
,
V. S.
,
Yao
,
J. S. T.
,
Batson
,
R. C.
,
Sue
,
S. L.
,
Jones
,
R.
, and
Nakamura
,
Y. A.
,
1989
, “
Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis
,”
Ann. Vasc. Surg.
,
3
, No.
1
, pp.
26
33
.
8.
Archie
,
J. P.
,
1997
, “
Geometric Dimension Changes With Carotid Endarterectomy Reconstruction
,”
J. Vasc. Surg.
,
25
, pp.
488
498
.
9.
Bassiouny
,
H. S.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
,
1992
, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced
,”
J. Vasc. Surg.
,
15
, pp.
708
717
.
10.
Geary
,
R. L.
,
Kohler
,
T. R.
,
Vergel
,
S.
,
Kirkman
,
T. R.
, and
Clowes
,
A. W.
,
1993
, “
Time Course of Flow-Induced Smooth Muscle Cell Proliferation and Intimal Thickening in Endothelialized Baboon Vascular Grafts
,”
Circ. Res.
,
74
, pp.
14
23
.
11.
Painter
,
T. A.
,
1991
, “
Myointimal Hyperplasia: Pathogenesis and Implications, 2. Animal Injury Models and Mechanical Factors
,”
Artif. Organs
,
15
, No.
2
, pp.
103
118
.
12.
Crawshaw
,
H. M.
,
Quist
,
W. C.
,
Serrallach
,
E.
,
Valeri
,
R.
, and
Logerfo
,
F. W.
,
1980
, “
Flow Disturbance at the Distal End-to-Side Anastomosis
,”
Arch. Surg.
,
115
, pp.
1280
1284
.
13.
Hughes
,
P. E.
, and
How
,
T. V.
,
1995
, “
Flow Structures at the Proximal Side-to-End Anastomosis: Influence of Geometry and Flow Division
,”
ASME J. Biomech. Eng.
,
117
, pp.
224
236
.
14.
Staalsen
,
N. H.
,
Vlrich
,
M.
,
Winther
,
J.
,
Pederson
,
E. M.
,
How
,
T.
, and
Nygaard
,
H.
,
1995
, “
The Anastomosis Angle Does Change the Flow Fields at Vascular End-to-Side Anastomoses in Vivo
,”
J. Vasc. Surg.
,
21
, pp.
460
471
.
15.
Dobrin
,
P. B.
,
Littooy
,
F. N.
, and
Endean
,
E. D.
,
1989
, “
Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts
,”
Surgery
,
105
, No.
3
, pp.
393
400
.
16.
White
,
S. S.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bassiouny
,
H.
,
Loth
,
F.
,
Jones
,
S. A.
, and
Glagov
,
S.
,
1993
, “
Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length
,”
ASME J. Biomech. Eng.
,
115
, pp.
104
111
.
17.
Ojha
,
M.
,
1994
, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
,
74
, pp.
1227
1231
.
18.
Kleinstreuer
,
C.
,
Lei
,
M.
, and
Archie
,
J. P.
,
1996
, “
Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a New Femoral Graft-Artery Connector
,”
ASME J. Biomech. Eng.
,
118
, pp.
506
510
.
19.
Lei, M., 1995, “Computational Fluid Dynamics Analyses and Optimal Design of Bifurcating Blood Vessels,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
20.
Lei
,
M.
,
Archie
,
J. P.
, and
Kleinstreuer
,
C.
,
1997
, “
Computational Design of a Bypass Graft That Minimizes Wall Shear Stress Gradients in the Region of the Distal Anastomosis
,”
J. Vasc. Surg.
,
25
, pp.
637
646
.
21.
Steinman
,
D. A.
,
Vinh
,
B.
,
Ethier
,
C. R.
,
Ojha
,
M.
,
Cobbold
,
R. S. C.
, and
Johnston
,
K. W.
,
1993
, “
A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model
,”
ASME J. Biomech. Eng.
,
115
, pp.
112
118
.
22.
Hofer
,
M.
,
Rappitsch
,
G.
,
Perktold
,
K.
,
Trubel
,
W.
, and
Schima
,
H.
,
1996
, “
Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia
,”
J. Biomech.
,
29
, No.
10
, pp.
1297
1308
.
23.
Schwartz
,
L. B.
,
O’Donohoe
,
M. K.
,
Purut
,
C. M.
,
Mikat
,
E. M.
,
Hagen
,
P. O.
, and
McCann
,
R. L.
,
1992
, “
Myointimal Thickening in Experimental Vein Grafts Is Dependent on Wall Tension
,”
J. Vasc. Surg.
,
15
, No.
1
, pp.
176
186
.
24.
Rittgers
,
S. E.
, and
Bhambhani
,
G. H.
,
1991
, “
Pulsatile Flow in a Modeled Bypass Graft Anastomosis Using Ultrasonic Doppler Color Flow Mapping
,”
Biomechanics Symposium, ASME AMD
-Vol.
120
, pp.
21
24
.
25.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
, and
Rittgers
,
S. E.
,
1999
, “
The Effect of Graft Caliber Upon Wall Shear Within in Vivo Distal Vascular Anastomoses
,”
ASME J. Biomech. Eng.
,
121
, pp.
79
88
.
26.
Ojha
,
M.
,
1993
, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
,
26
, No.
12
, pp.
1377
1388
.
27.
Rhee
,
K.
, and
Tarbell
,
J. M.
,
1994
, “
A Study of the Wall Shear Rate Distribution Near the End-to-End Anastomosis of a Rigid Graft and a Compliant Artery
,”
J. Biomech.
,
27
, No.
3
, pp.
329
338
.
28.
Keynton
,
R. S.
,
Rittgers
,
S. E.
, and
Shu
,
M. C. S.
,
1991
, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An in Vitro Model Study
,”
ASME J. Biomech. Eng.
,
113
, pp.
458
463
.
29.
Loth
,
F.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Bassiouny
,
H. S.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1997
, “
Measurements of Velocity and Wall Shear Stress in a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
,
119
, pp.
187
194
.
30.
Perktold
,
K.
,
Tatzl
,
H.
, and
Schima
,
H.
,
1993
, “
Computer Simulation of Hemodynamic Effects in Distal Vascular Graft Anastomoses
,”
Advances in Bioengineering, ASME BED
-Vol.
26
, pp.
91
94
.
31.
Ethier
,
C. R.
,
Zhang
,
X.
,
Karpik
,
S. R.
and
Ojha
,
M.
,
1993
, “
Numerical Simulation of Flow in a Model Three-Dimensional End-to-Side Anastomosis
,”
Advances in Bioengineering, ASME BED
-Vol.
26
, pp.
83
86
.
32.
Fei
,
D. Y.
,
Thomas
,
J. D.
, and
Rittgers
,
S. E.
,
1994
, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: A Numerical Model Study
,”
ASME J. Biomech. Eng.
,
116
, pp.
331
336
.
33.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
,
1996
, “
Geometric Design Improvements for Femoral Graft-Artery Junctions Mitigating Restenosis
,”
J. Biomech.
,
29
, No.
12
, pp.
1605
1614
.
34.
Loth, F., 1993, “Velocity and Wall Shear Measurements Inside a Vascular Graft Model Under Steady and Pulsatile Flow Conditions,” Ph.D. thesis, Georgia Institute of Technology, Georgia, GA.
35.
Cuvelier, C., Segal, A., and Steenhoven, A. A. Van, 1986, Finite Element Methods and Navier-Stokes Equations, Reidel, Dordrecht, the Netherlands.
36.
Lei, M., Jones, S. A., and Giddens, D. P., 2000, “Numerical Simulation of Pulsatile Flow in a Model Carotid Bifurcation—Part I: Comparison With LDA Measurements,” Int. J. Cardiovascular Medicine & Science, under review.
37.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation – Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis
,
5
, No.
3
, pp.
293
302
.
38.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
, pp.
74
82
.
39.
Archie
,
J. P.
,
1988
, “
Early Postoperative Femoral-Distal Bypass Graft Failure Due to Vascular Clamp Injury Induced Femoral Artery Thrombosis
,”
Am. J. Surg.
,
54
, pp.
167
168
.
40.
Miwa
,
H.
,
Matsude
,
T.
,
Tami
,
N.
,
Kondo
,
K.
, and
Iida
,
F.
,
1993
, “
An in Vitro Endothelialized Compliant Vascular Graft Minimizes Anastomotic Hyperplasia
,”
ASAIO J.
,
39
, No.
3
, pp.
501
505
.
41.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
,
Rodway
,
N. V.
,
Li
,
Q.
,
Mallugari
,
N.
, and
Rittgers
,
S. E.
,
1996
, “
Wall Shear Stress Gradient Measurements Within the Distal Anastomosis of Vascular Bypass Grafts: An in Vivo Model Study
,” Advances in Bioengineering,
BED
-Vol.
33
, pp.
469
470
.
42.
Loth
,
F.
,
Jones
,
S. A.
,
Giddens
,
D. P.
, and
Brossollet
,
L. J.
,
1994
, “
Accuracy of Wall Shear Stress Estimates From Laser-Doppler Anemometry Measurements Under Unsteady Flow Conditions
,” Advances in Bioengineering,
ASME BED
-Vol.
28
, pp.
307
308
.
You do not currently have access to this content.