We have developed an approximate method for simulating the three-dimensional contact of soft biphasic tissues in diarthrodial joints under physiological loading. Input to the method includes: (i) kinematic information describing an in vitro joint articulation, measured while the cartilage is deformed under physiological loads, (ii) geometric properties for the relaxed (undeformed) cartilage layers, obtained for the analyses in this study via stereophotogrammetry, and (iii) material parameters for the biphasic constitutive relations used to represent cartilage. Solid models of the relaxed tissue layers are assembled in physiological positions, resulting in a mathematical overlap of the cartilage layers. The overlap distribution is quantified and converted via the biphasic governing equations into applied traction boundary conditions for both the solid and fluid phases for each of the contacting layers. Linear, biphasic, three-dimensional, finite element analysis is performed using the contact boundary conditions derived for each of the contacting layers. The method is found to produce results consistent with the continuity requirements of biphasic contact. Comparison with results from independent, biphasic contact analyses of axisymmetric problems shows that the method slightly underestimates the contact area, leading to an overestimation of the total traction, but yields a good approximation to elastic stress and solid phase displacement.

1.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
2.
Lai
,
W. M.
,
Hou
,
H. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformational Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
3.
Oomens
,
C. W. J.
,
Van Campen
,
D. H.
, and
Grootenboer
,
H. J.
,
1987
, “
A Mixture Approach to the Mechanics of Skin
,”
J. Biomech.
,
20
, pp.
877
885
.
4.
Suh
,
J.-K.
,
Spilker
,
R. L.
, and
Holmes
,
M. H.
,
1991
, “
A Penalty Finite Element Analysis for Nonlinear Mechanicas of Biphastic Hydrated Soft Tissue Under Large Deformation
,”
Int. J. Numer. Methods Eng.
,
32
, pp.
1411
1439
.
5.
Spilker
,
R. L.
, and
Maxian
,
T. A.
,
1990
, “
A Mixed-Penalty Finite Element Formulation of the Linear Biphasic Theory for Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
1063
1082
.
6.
Vermilyea
,
M. E.
, and
Spilker
,
R. L.
,
1992
, “
A Hybrid Finite Element Formulation of the Linear Biphasic Equations for Soft Hydrated Tissues
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
567
594
.
7.
Wayne
,
J. S.
,
Woo
,
S. L.-Y.
, and
Kwan
,
M. K.
,
1991
, “
Application of the u-p Finite Element Method to the Study of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
397
403
.
8.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1997
, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I—Alternate Formulations
,”
Comp. Methods Biomech. Biomed. Eng.
,
1
, pp.
25
46
.
9.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1997
, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II—Nonlinear Examples
,”
Comp. Methods Biomech. Biomed. Eng.
,
1
, pp.
151
170
.
10.
Donzelli
,
P. S.
, and
Spilker
,
R. L.
,
1998
, “
A Contact Finite Element Formulation for Biological Soft Hydrated Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
153
, pp.
63
79
.
11.
Schreppers
,
G. J. M. A.
,
Sauren
,
A. A. H. J.
, and
Huson
,
A.
,
1990
, “
A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area
,”
J. Eng. Medicine
,
204
, pp.
53
59
.
12.
Tissakht, M., and Ahmed, A. M., 1990, “Effect of Tibial Axial Rotation on Knee Meniscal Stress: A Finite Element Study,” in: Trans. 36th Annual Meeting of the Orthopaedic Research Society, T. M. Wright, ed., ORS, Park Ridge, IL, 15, p. 243.
13.
Tissakht, M., and Ahmed, A. M., 1992, “Parametric Study Using Different Elastic and Poroelastic Axisymmetric Models of the Femur–Meniscus–Tibia Unit,” in: Advances in Bioengineering, M. W. Bidez, ed., ASME BED-Vol. 22, pp. 241–244.
14.
Tissakht, M., Marchand, F., and Ahmed, A. M., 1991, “Non-Linear Finite Element Analysis of the Knee Menisci: A Composite Fiber-Reinforced Model,” in: Trans 37th Orthopaedic Research Society Meeting, 16, p. 294.
15.
Yu, H., and Stone, J. S., 1998, “Viscoelastic Finite Element Contact Analysis of Articular Joints,” in: Proc. 1998 Bioengineering Conference, A. P. Yoganathan, ed., ASME BED-Vol. 39, pp. 217–218.
16.
Hale
,
J. E.
,
Rudert
,
M. J.
, and
Brown
,
T. D.
,
1993
, “
Indentation Assessment of Biphasic Mechanical Property Deficits in Size-Dependent Osteochondral Defect Repair
,”
J. Biomech.
,
26
, pp.
1319
1325
.
17.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1998
, “
Evaluation of the Finite Element Software ABAQUS for Biomechanical Modelling of Biphasic Tissues
,”
J. Biomech.
,
31
, pp.
165
169
.
18.
Nilsson, M. C., Davy, D. T., and Mansour, J. M., 1997, “Beneficial Mechanical Effects of Femoral Hypertrophy,” in: Trans. 43rd Annual Meeting of the Orthopaedic Research Society, L. J. Sandell, ed., ORS, Palatine, IL, 22, p. 828.
19.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1989
, “
Boundary Conditions at the Cartilage–Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME J. Biomech. Eng.
,
111
, pp.
78
87
.
20.
Ateshian
,
G. A.
,
1994
, “
A theoretical Model for Boundary Friction in Articular Cartilage
,”
Ann. Biomed. Eng.
,
22
, Suppl. 1, p.
63
63
.
21.
Simon
,
B. R.
,
Wu
,
J. S. S.
,
Zienkiewicz
,
O. C.
, and
Paul
,
D. K.
,
1986
, “
Evaluation of u-w and u-p Finite Element Methods for the Dynamic Response of Saturated Porous Media Using One-Dimensional Models
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
10
, pp.
483
499
.
22.
Oomens
,
C. W. J.
, and
Van Campen
,
D. H.
,
1987
, “
In Vitro Compression of a Soft Tissue Layer on a Rigid Foundation
,”
J. Biomech.
,
20
, pp.
923
935
.
23.
Mish, K. D., Herrmann, L. R., and Muraleetharan, K., 1992, “A Comparison of Biot Formulation Finite Element Models for Two- and Three-DimensionalTransient Soil Problems,” in: Sympsoium on Computational Mechanics of Porous Materials and Their Thermal Decomposition, N. J. Salamon and R. M. Sullivan, eds., ASME AMD-Vol. 136, pp. 69–79.
24.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1998
, “
Finite Element Formulations for Hyperelastic Transversely Isotropic Biphasic Soft Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
151
, pp.
513
538
.
25.
Parasolid, 1994, Version 6 KI Programming Reference Manual, Electronic Data Systems Corporation, Maryland Heights, MO.
26.
Donzelli, P. S., 1995, “A Mixed-Penalty Contact Finite Element Formulation for Biphasic Soft Tissues,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
27.
Kelkar
,
R.
, and
Ateshian
,
G. A.
,
1999
, “
Contact Creep of Biphasic Cartilage Layers
,”
ASME J. Biomech. Eng.
,
66
, pp.
137
145
.
28.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
,
1994
, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
27
, pp.
1347
1360
.
29.
Cohen, B.,Gardner, T. R., and Ateshian, G. A., 1993, “The Influence of Transverse Isotropy on Cartilage Indentation Behavior—A Study of the Human Humeral Head,” in: Trans. 39th Annual Meeting of the Orthopaedic Research Society, ORS, Park Ridge, IL, 18, pp. 185.
30.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layer and Correlations With Tissue Failure
,”
J. Biomech.
,
32
, pp.
1037
1047
.
You do not currently have access to this content.