We have developed an approximate method for simulating the three-dimensional contact of soft biphasic tissues in diarthrodial joints under physiological loading. Input to the method includes: (i) kinematic information describing an in vitro joint articulation, measured while the cartilage is deformed under physiological loads, (ii) geometric properties for the relaxed (undeformed) cartilage layers, obtained for the analyses in this study via stereophotogrammetry, and (iii) material parameters for the biphasic constitutive relations used to represent cartilage. Solid models of the relaxed tissue layers are assembled in physiological positions, resulting in a mathematical overlap of the cartilage layers. The overlap distribution is quantified and converted via the biphasic governing equations into applied traction boundary conditions for both the solid and fluid phases for each of the contacting layers. Linear, biphasic, three-dimensional, finite element analysis is performed using the contact boundary conditions derived for each of the contacting layers. The method is found to produce results consistent with the continuity requirements of biphasic contact. Comparison with results from independent, biphasic contact analyses of axisymmetric problems shows that the method slightly underestimates the contact area, leading to an overestimation of the total traction, but yields a good approximation to elastic stress and solid phase displacement.
Skip Nav Destination
Article navigation
August 2001
Technical Papers
An Evaluation of Three-Dimensional Diarthrodial Joint Contact Using Penetration Data and the Finite Element Method
W. L. Dunbar,, Jr.,
W. L. Dunbar,, Jr.
Johnson & Johnson Professional, Inc. Raynham, MA 02767-0350
Search for other works by this author on:
K. U¨n,
K. U¨n
Department of Biomedical Engineering and the Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Search for other works by this author on:
P. S. Donzelli,
P. S. Donzelli
Department of Biomedical Engineering and the Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Search for other works by this author on:
R. L. Spilker
R. L. Spilker
Department of Biomedical Engineering and the Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Search for other works by this author on:
W. L. Dunbar,, Jr.
Johnson & Johnson Professional, Inc. Raynham, MA 02767-0350
K. U¨n
Department of Biomedical Engineering and the Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
P. S. Donzelli
Department of Biomedical Engineering and the Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
R. L. Spilker
Department of Biomedical Engineering and the Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Contributed by the Bioengineering Division for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Division February 24, 2000; revised manuscript received March 26, 2001. Associate Editor: G. A. Ateshian.
J Biomech Eng. Aug 2001, 123(4): 333-340 (8 pages)
Published Online: March 26, 2001
Article history
Received:
February 24, 2000
Revised:
March 26, 2001
Citation
Dunbar, , W. L., Jr., U¨n , K., Donzelli , P. S., and Spilker, R. L. (March 26, 2001). "An Evaluation of Three-Dimensional Diarthrodial Joint Contact Using Penetration Data and the Finite Element Method ." ASME. J Biomech Eng. August 2001; 123(4): 333–340. https://doi.org/10.1115/1.1384876
Download citation file:
Get Email Alerts
Related Articles
Biphasic Finite Element Modeling of Hydrated Soft Tissue Contact Using an Augmented Lagrangian Method
J Biomech Eng (November,2011)
Cartilage Thickness Distribution Affects Computational Model Predictions of Cervical Spine Facet Contact Parameters
J Biomech Eng (January,2011)
Development and Validation of A C0–C7 FE Complex for Biomechanical Study
J Biomech Eng (October,2005)
Related Proceedings Papers
Related Chapters
Approximate Analysis of Plates
Design of Plate and Shell Structures
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
STRUCTURAL RELIABILITY ASSESSMENT OF PIPELINE GIRTH WELDS USING GAUSSIAN PROCESS REGRESSION
Pipeline Integrity Management Under Geohazard Conditions (PIMG)