The results of computational simulations may supplement MR and other in vivo diagnostic techniques to provide an accurate picture of the hemodynamics in particular vessels, which may help demonstrate the risks of embolism or plaque rupture posed by particular plaque deposits. In this study, a model based on an endarterectomy specimen of the plaque in a carotid bifurcation was examined. The flow conditions include steady flow at Reynolds numbers of 300, 600, and 900 as well as unsteady, pulsatile flow. Both dynamic pressure and wall shear stress are very high, with shear values up to 70N/m2, proximal to the stenosis throat in the internal carotid artery, and both vary significantly through the flow cycle. The wall shear stress gradient is also strong along the throat. Vortex shedding is observed downstream of the most severe occlusion. Two turbulence models, the Chien and Goldberg varieties of k-ε, are tested and evaluated for their relevance in this geometry. The Chien model better captures phenomena such as vortex shedding. The flow distal to stenosis is likely transitional, so a model that captures both laminar and turbulent behavior is needed.

1.
Nerem
,
R. M.
, and
Cornhill
,
J. F.
,
1980
, “
The Role of Fluid Mechanics in Atherogenesis
,”
ASME J. Biomech. Eng.
,
102
, pp.
181
189
.
2.
Hackett
,
D.
,
Davies
,
G.
, and
Maseri
,
A.
,
1988
, “
Pre-existing Coronary Stenoses in Patients with First Myocardial Infarction Are Not Necessarily Severe
,”
Eur. Heart J.
,
9
, pp.
1317
1323
.
3.
Mann
,
J. M.
, and
Davies
,
M. J.
,
1975
, “
Vulnerable Plaque—Relation of Characteristics to Degree of Stenosis in Human Coronary Arteries
,”
Circulation
,
94
, pp.
928
931
.
4.
Davies
,
M. J.
, and
Thomas
,
A. C.
,
1985
, “
Plaque Fissuring—The Cause of Acute Myocardial Infarction, Sudden Ischaemic Death, and Crescendo Angina
,”
Br. Heart J.
,
53
, pp.
363
373
.
5.
Carr
,
S.
,
Farb
,
A.
,
Pearce
,
W. H.
,
Virmani
,
R.
, and
Yao
,
J. S.
,
1996
, “
Atherosclerotic Plaque Rupture in Symptomatic Carotid Artery Stenosis
,”
J. Vasc. Surg.
,
23
, pp.
755
766
.
6.
Sitzer
,
M.
,
Muller
,
W.
,
Siebler
,
M.
,
Hort
,
W.
,
Knoemeyer
,
H. W.
, et al.
,
1995
, “
Plaque Ulceration and Lumen Thrombus are the Main Sources of Cerebral Microemboli in High-Grade Internal Carotid Artery Stenosis
,”
Stroke
,
26
, pp.
1231
1233
.
7.
Doriot, P-A, Dorsaz, P-A, Dorsaz, L., and Rutishauser, W., 1996, “Overestimation of Stenosis Severity by Single Plane Geometric Measurements,” Computers in Cardiology, A. Murray and R. Arzbaecher, eds., IEEE, pp. 109–112.
8.
Fukushima
,
E.
,
1999
, “
Nuclear Magnetic Resonance as a Tool to Study Flow
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
95
123
.
9.
Jou
,
L. D.
,
van Tyen
,
R.
,
Berger
,
S. A.
, and
Saloner
,
D.
,
1996
, “
Calculation of the Magnetization Distribution for Fluid Flow in Curved Vessels
,”
Magn. Reson. Med.
,
35
, pp.
577
584
.
10.
Jou
,
L. D.
, and
Saloner
,
D.
,
1998
, “
A Numerical Study of Magnetic Resonance Images of Pulsatile Flow in a Two-Dimensional Carotid Bifurcation: A Numerical Study of MR Images
,”
Med. Eng. Phys.
,
20
, pp.
643
652
.
11.
Nazemi
,
M.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
,
1990
, “
Pulsatile Two-Dimensional Flow and Plaque Formation in a Carotid Artery Bifurcation
,”
J. Biomech.
,
23
, pp.
1031
1037
.
12.
Jou, L. D., 1995, Numerical Simulations of Blood Flow Through the Carotid Artery Bifurcation, Ph.D. thesis, University of California, Berkeley.
13.
Cheng
,
T.
,
Deville
,
D.
,
Dheur
,
L.
, and
Vanderschuren
,
L.
,
1992
, “
Finite Element Simulation of Pulsatile Flow Through Arterial Stenosis
,”
J. Biomech.
,
25
, pp.
1141
1152
.
14.
Johnston
,
P. R.
, and
Kilpatrick
,
D.
,
1991
, “
Mathematical Modeling of Flow Through an Irregular Arterial Stenosis
,”
J. Biomech.
,
24
, pp.
1069
1077
.
15.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1984
, “
Pulsatile Post-Stenotic Flow Studied with Laser Doppler Anemometry
,”
J. Biomech.
,
17
, pp.
695
705
.
16.
Cavalcanti
,
S.
,
1995
, “
Hemodynamics of an Artery with Mild Stenosis
,”
J. Biomech.
,
28
, pp.
387
399
.
17.
Bathe
,
M.
, and
Kamm
,
R. D.
,
1999
, “
A Fluid-Structure Interaction Finite Element Analysis of Pulsatile Blood Flow Through a Compliant Stenotic Artery
,”
ASME J. Biomech. Eng.
,
121
, pp.
361
369
.
18.
Roach, M. R., 1972, “Poststenotic Dilation in Arteries,” Cardiovascular Fluid Dynamics, Vol. 2, D. H. Bergel, ed., Academic Press, London, pp. 111–139.
19.
Clark
,
C.
,
1980
, “
The Propagation of Turbulence Produced by a Stenosis
,”
J. Biomech.
,
13
, pp.
591
604
.
20.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1983
, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Numbers
,”
J. Biomech.
,
16
, pp.
505
516
.
21.
Ghalichi
,
F.
,
Deng
,
X.
,
de Champlain
,
A.
,
Douville
,
Y.
,
King
,
M.
, and
Guidoin
,
R.
,
1998
, “
Low Reynolds Number Turbulence Modeling of Blood Flow in Arterial Stenoses
,”
Biorheology
,
35
, pp.
281
294
.
22.
Cassanova
,
R. A.
, and
Giddens
,
D. P.
,
1978
, “
Disorder Distal to Modeled Stenoses in Steady and Pulsatile Flow
,”
J. Biomech.
,
11
, pp.
441
453
.
23.
Palmen
,
D. E. M.
,
van de Vosse
,
F. N.
,
Janssen
,
J. D.
, and
van Dongen
,
M. E. H.
,
1994
, “
Analysis of the Flow in Stenosed Carotid Artery Bifurcation Models—Hydrogen-Bubble Visualisation
,”
J. Biomech.
,
27
, pp.
581
590
.
24.
Khalifa
,
A. M. A.
, and
Giddens
,
D. P.
,
1981
, “
Characterization and Evolution of Poststenotic Flow Disturbances
,”
J. Biomech.
,
14
, pp.
279
296
.
25.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
,
2000
, “
Influence of Stenosis Morphology on Flow Through Severely Stenotic Vessels: Implications for Plaque Rupture
,”
J. Biomech.
,
33
, pp.
443
455
.
26.
Bale-Glickman, J., Selby, K., and Savas¸, O¨., (unpublished), “Visualization and Measurements of Steady Flow in Exact-Replica Flow Phantoms of Atherosclerotic Carotid Bifurcations,” submitted to ASME J. Biomech. Eng.
27.
Bharadvaj
,
B. K.
,
Mabon
,
R. F.
, and
Giddens
,
D. P.
,
1982
, “
Steady Flow in a Model of the Human Carotid Bifurcation. Part 1—Flow Visualization
,”
J. Biomech.
,
15
, pp.
349
362
.
28.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
,
1991
, “
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
,
113
, pp.
464
475
.
29.
Perktold
,
K.
,
Thurner
,
E.
, and
Kenner
,
T.
,
1994
, “
Flow and Stress Characteristics in Rigid Walled and Compliant Carotid Artery Bifurcation Models
,”
Med. Biol. Eng. Comput.
,
32
, pp.
19
26
.
30.
Singhal, A. K., 1998, “Key Elements of Verification and Validation of CFD Software,” 29th AIAA Fluid Dynamics Conference, AIAA 98-2639.
31.
Van Doormal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.
32.
Chien
,
K-Y.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model
,”
AIAA J.
,
20
, pp.
33
38
.
33.
Goldberg
,
U. C.
,
1986
, “
Separated Flow Treatment with a New Turbulence Model
,”
AIAA J.
,
24
, pp.
1711
1713
.
34.
Fung, Y. C., 1984, Biodynamics: Circulation, Springer, New York.
35.
Scott Blair, G. W., and Spanner, D. C., 1974, An Introduction to Biorheology, Elsevier, Amsterdam.
36.
Tu
,
C.
, and
Deville
,
M.
,
1996
, “
Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenoses
,”
J. Biomech.
,
29
, pp.
899
908
.
37.
Buchanan
, Jr.,
J. R.
,
Kleinstreuer
,
C.
, and
Comer
,
J. K.
,
2000
, “
Rheological Effects on Pulsatile Hemodynamics in a Stenosed Tube
,”
Comput. Fluids
,
29
, pp.
695
724
.
38.
Das
,
B.
,
Johnson
,
P. C.
, and
Popel
,
A. S.
,
1998
, “
Effect of Nonaxisymmetric Hematocrit Distribution on Non-Newtonian Blood Flow in Small Tubes
,”
Biorheology
,
35
, pp.
69
87
.
39.
Lowe
,
G. D. O.
,
Lee
,
A. J.
,
Rumley
,
A.
,
Price
,
J. F.
, and
Fowkes
,
F. G. R.
,
1997
, “
Blood Viscosity and Risk of Cardiovascular Events: the Edinburgh Artery Study
,”
Br. J. Haematol.
,
96
, pp.
168
173
.
40.
Gertz
,
S. D.
, and
Roberts
,
W. C.
,
1990
, “
Hemodynamic Shear Force in Rupture of Coronary Arterial Atherosclerotic Plaques
,”
Am. J. Cardiol.
,
66
, pp.
1368
1372
.
41.
Strony
,
J.
,
Beaudoin
,
A.
,
Brands
,
D.
, and
Adelman
,
B.
,
1993
, “
Analysis of Shear Stress and Hemodynamic Factors in a Model of Coronary Artery Stenosis and Thrombosis
,”
Am. J. Physiol.
,
265
, pp.
1787
1796
.
42.
Fry
,
D. L.
,
1968
, “
Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients
,”
Circ. Res.
,
12
, pp.
165
197
.
43.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
, pp.
850
858
.
44.
Falk
,
E.
,
1992
, “
Why Do Plaques Rupture?
Circulation
,
86
, pp.
III30–III42
III30–III42
.
45.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation
,”
Arteriosclerosis
,
5
, pp.
293
302
.
46.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G. A.
,
1995
, “
Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries
,”
ASME J. Biomech. Eng.
,
117
, pp.
350
357
.
47.
DePaola
,
N.
,
Gimbrone
,
M. A.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradient
,”
Arterioscler. Thromb.
,
12
, pp.
1254
1257
.
48.
Nagel
,
T.
,
Resnick
,
N.
,
Atkinson
,
W. J.
,
Dewey
,
C. F.
, and
Gimbrone
,
M. A.
,
1994
, “
Shear Stress Selectively Upregulates Intercelluar Adhesion Molecule-1 Expression in Cultured Human Vascular Endothelial Cells
,”
J. Clin. Invest.
,
94
, pp.
885
891
.
49.
Boughner
,
D. R.
, and
Roach
,
M. R.
,
1971
, “
Effect of Low Frequency Vibration on the Arterial Wall
,”
Circ. Res.
,
29
, pp.
136
144
.
50.
Hellums, J. D., and Brown, C. H., 1977, “Blood Cell Damage by Mechanical Forces,” Cardiovascular Flow Dynamics and Measurements, N. H. C. Hwang and N. A. Normann, eds., University Park Press, Baltimore, pp. 799–823.
51.
Deshpande, M. D., 1977, Steady Laminar and Turbulent Flow Through Vascular Stenoses Models, Ph.D. thesis, Georgia Institute of Technology, Atlanta.
52.
Bluestein
,
D.
,
Gutierrez
,
C.
,
Londono
,
M.
, and
Schoephoerster
,
R. T.
,
1999
, “
Vortex Shedding in Steady Flow Through a Model of an Arterial Stenosis and its Relevance to Mural Platelet Deposition
,”
Ann. Biomed. Eng.
,
27
, pp.
763
773
.
53.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V.
,
1989
, “
Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques
,”
Lancet
,
2
, pp.
941
944
.
54.
Falk
,
E.
,
Shah
,
P. K.
, and
Fuster
,
V.
,
1995
, “
Coronary Plaque Disruption
,”
Circulation
,
92
, pp.
657
671
.
55.
Vito, R. P., Whang, M. C., Giddens, D. P. et al., 1990, “Stress Analysis of the Diseased Arterial Cross-Section,” Advances in Bioengineering, ASME BED Series, pp. 273–276.
56.
Salunke
,
N. V.
, and
Topoleski
,
L. D. T.
,
1997
, “
Biomechanics of Atherosclerotic Plaque
,”
Crit. Rev. Biomed. Eng.
,
25
, pp.
243
285
.
57.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1984
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
,
23
, pp.
1308
1319
.
58.
Wilcox, D. C., 1991, “A Half Century Historical Review of the k-ω Model,” AIAA-91-0615.
59.
Blackshear
,
P. L.
,
Doorman
,
F. D.
,
Steinbach
,
J. H.
,
Maybach
,
E. J.
,
Singh
,
A.
, and
Collingham
,
R. E.
,
1966
, “
Shear Wall Interaction and Hemolysis
,”
Trans. Am. Soc. Artif. Intern. Organs
,
12
, pp.
113
120
.
60.
Forstrom, R. J., 1969, “A New Measure of Erythrocyte Membrane Strength: The Jet Fragility Test,” Ph.D. thesis, University of Minnesota, Minneapolis.
61.
Sallam
,
A. M.
, and
Hwang
,
N. H. C.
,
1984
, “
Human Red Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
,
21
, pp.
783
797
.
62.
Sutera
,
S. P.
, and
Mehrjardi
,
M. H.
,
1975
, “
Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow
,”
Biophys. J.
,
15
, pp.
1
10
.
You do not currently have access to this content.