Background: Molecular rotors exhibit viscosity-dependent quantum yield, allowing non-mechanical determination of fluid viscosity. We analyzed fluorescence in the presence of viscosity-modulating macromolecules several orders of magnitude larger than the rotor molecule. Method of approach: Fluorescence of aqueous starch solutions with a molecular rotor in solution was related to viscosity obtained in a cone-and-plate viscometer. Results: In dextran solutions, emission intensity was found to follow a power-law relationship with viscosity. Fluorescence in hydroxyethylstarch solutions showed biexponential behavior with different exponents at viscosities above and below 1.5 mPa s. Quantum yield was generally higher in hydroxyethylstarch than in dextran solutions. The power-law relationship was used to backcalculate viscosity from intensity with an average precision of 2.2% (range of −5.5% to 5.1%). Conclusions: This study indicates that hydrophilic molecular rotors are suitable as colloid solution viscosity probes after colloid-dependent calibration.

1.
Fo¨rster
,
Th.
, and
Hoffmann
,
G.
,
1971
, “
Die Viskosita¨tsabha¨ngigkeit Der Fluoreszenzquantenausbeuten Einiger Farbstoffsysteme (Effect of Viscosity on the Fluorescence Quantum Yield of Some Dye Systems)
,”
Z. Phys. Chem.
,
75
, pp.
63
76
.
2.
Loutfy
,
R. O.
,
1986
, “
Fluorescence Probes for Polymer Free-Volume
,”
Pure Appl. Chem.
,
58
(
9
), pp.
1239
1248
.
3.
Haidekker
,
M. A.
,
L’Heureux
,
N.
, and
Frangos
,
J. A.
,
2000
, “
Fluid Shear Stress Increases Membrane Fluidity in Endothelial Cells: a Study With DCVJ Fluorescence
,”
Am. J. Physiol Heart Circ. Physiol.
,
278
(
4
), pp.
H1401–H1406
H1401–H1406
.
4.
Haidekker
,
M. A.
,
Tsai
,
A. G.
,
Brady
,
T.
,
Stevens
,
H. Y.
,
Frangos
,
J. A.
,
Theodorakis
,
E.
, and
Intaglietta
,
M.
,
2002
, “
A Novel Approach to Blood Plasma Viscosity Measurement Using Fluorescent Molecular Rotors
,”
Am. J. Physiol. Heart Circ. Physiol.
,
282
(
5
), pp.
H1609–H1614
H1609–H1614
.
5.
Tsai
,
A. G.
,
Friesenecker
,
B.
,
McCarthy
,
M.
,
Sakai
,
H.
, and
Intaglietta
,
M.
,
1998
, “
Plasma Viscosity Regulates Capillary Perfusion During Extreme Hemodilution in Hamster Skinfold Model
,”
Am. J. Physiol.
,
275
(
6 Pt 2
), pp.
H2170–H2180
H2170–H2180
.
6.
Tsai
,
A. G.
, and
Intaglietta
,
M.
,
2001
, “
High Viscosity Plasma Expanders: Volume Restitution Fluids for Lowering the Transfusion Trigger
,”
Biorheology
,
38
(
2-3
), pp.
229
237
.
7.
Reinhart
,
W. H.
,
Danoff
,
S. J.
,
Usami
,
S.
, and
Chien
,
S.
,
1984
, “
Rheologic Measurements on Small Samples With a New Capillary Viscometer
,”
J. Lab. Clin. Med.
,
104
(
6
), pp.
921
931
.
8.
Law
,
K. Y.
,
1980
, “
Fluorescence Probe for Microenvironments: Anomalous Viscosity Dependence of the Fluorescence Quantum Yield of P-N,N-Dialkylaminobenzylidenmalononitrile in 1-Alkanols
,”
Chem. Phys. Lett.
,
75
(
3
), pp.
545
549
.
9.
Haljamae, H., 1998, Volume Replacement, Springer, Berlin, pp. 1–22, Chap. 1.
10.
Dewachter
,
P.
,
Laxenaire
,
M. C.
,
Donner
,
M.
,
Kurtz
,
M.
, and
Stoltz
,
J. F.
,
1992
, “
In Vivo Rheologic Studies of Plasma Substitutes
,”
Ann. Fr. Anesth. Reanim
,
11
(
5
), pp.
516
525
.
11.
Eckmann
,
D. M.
,
Bowers
,
S.
,
Stecker
,
M.
, and
Cheung
,
A. T.
,
2000
, “
Hematocrit, Volume Expander, Temperature, and Shear Rate Effects on Blood Viscosity
,”
Anesth. Analg. (Baltimore)
,
91
(
3
), pp.
539
545
.
12.
Gonzalez de Zarate
,
A. J.
,
Caton Valdes
,
M. M.
,
Lopez
,
J. C. Alvarez
,
Vega Sanchez
,
J. M.
, and
Ojeda
,
O. J.
,
1991
, “
Rheological and Expander Effect of Hydroxyethyl-Starch in Intradural Anesthesia
,”
Rev. Esp. Anestesiol. Reanim.
,
38
(
2
), pp.
90
93
.
13.
Intaglietta
,
M.
,
1994
, “
Hemodilution and Blood Substitutes
,”
Artif. Cells Blood Substit Immobil Biotechnol.
,
22
(
2
), pp.
137
144
.
14.
Lamke
,
L. O.
, and
Liljedahl
,
S. O.
,
1976
, “
Plasma Volume Changes After Infusion of Various Plasma Expanders
,”
Resuscitation
,
5
(
2
), pp.
93
102
.
15.
Squire, J. R., Bull, J. P., Maycock, W., and Ricketts, C. R., 1955, Dextran: Its Properties and Use in Medicine, Charles C. Thomas, Springfield, IL, pp. 8–67.
16.
Hehre
,
E. J.
,
1941
, “
Production From Sucrose of a Serologically Reactive Polysaccharide by a Sterile Bacterial Extract
,”
Science
,
93
, pp.
237
238
.
17.
Foster, J. F., 1965, Starch: Chemistry and Technology, Academic Press, New York, NY, pp. 349–389, Chap. 15.
18.
Loutfy
,
R. O.
, and
Arnold
,
B. A.
,
1982
, “
Effect of Viscosity and Temperature on Torsional Relaxation of Molecular Rotors
,”
J. Phys. Chem.
,
86
, pp.
4205
4211
.
19.
Loutfy
,
R. O.
, and
Law
,
K. Y.
,
1980
, “
Electrochemistry and Spectroscopy of Intramolecular Charge-Transfer Complexes. P-N,N-Dialkylamino benzylidenemanononitriles
,”
J. Phys. Chem.
,
84
, pp.
2803
2808
.
20.
Doolittle
,
A. K.
,
1952
, “
Studies in Newtonian Flow. III. The Dependence of the Viscosity of Liquids on Molecule Weight and Free Space (in Homologous Series)
,”
J. Appl. Physiol.
,
23
, pp.
236
239
.
21.
Iio
,
T.
,
Itakura
,
M.
,
Takahashi
,
S.
, and
Sawada
,
S.
,
1991
, “
9-(Dicyanovinyl)Julolidine Binding to Bovine Brain Calmodulin
,”
J Biochem.
,
109
, pp.
499
502
.
You do not currently have access to this content.