Motivated by biometric applications, we analyze oscillatory flow in a cone-and-plate geometry. The cone is rotated in a simple harmonic way on a stationary plate. Based on assuming that the angle between the cone and plate is small, we describe the flow analytically by a perturbation method in terms of two small parameters, the Womersley number and the Reynolds number, which account for the influences of the local acceleration and centripetal force, respectively. Working equations for the shear stresses induced both by laminar primary and secondary flows on the plate surface are presented.

1.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
, 2000, “
Functional Tissue Engineering: the Role of Biomechanics
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
570
575
.
2.
Brown
,
T. D.
, 2000, “
Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,”
J. Biomech.
0021-9290,
33
, pp.
3
14
.
3.
Dewey
Jr.,
C. F.
,
Bussolari
,
S. R.
,
Gimbrone
Jr.,
M. A.
, and
Davies
,
P. F.
1981, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
J. Biomech. Eng.
0148-0731,
103
, pp.
177
185
.
4.
Sdougos
,
H. P.
,
Bussolari
,
S. R.
, and
Dewey
,
C. F.
, 1984, “
Secondary Flow and Turbulence in a Cone-and-Plate Device
,”
J. Fluid Mech.
0022-1120,
138
, pp.
379
404
.
5.
Malek
,
A.
, and
Izumo
,
S.
, 1995, “
Control of Endothelial Cell Gene Expression by Flow
,”
J. Biomech.
0021-9290,
28
, pp.
1515
1528
.
6.
Blackman
,
B. R.
,
Thibault
,
L. E.
, and
Barbee
,
K. A.
, 2000, “
Selective Modulation of Endothelial Cell [Ca2+]i Response to Flow by the Onset Rate of Shear Stress
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
274
282
.
7.
Hochleitner
,
B. W.
,
Hochleitner
,
E. O.
,
Obrist
,
P.
,
Eberl
,
T.
,
Amberger
,
A.
,
Xu
,
Q.
,
Margreiter
,
R.
, and
Wick
,
G.
, 2000, “
Fluid Shear Stress Induced Heat Shock Protein 60 Expression in Endothelial Cells In Vitro and In Vivo
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
20
, pp.
617
623
.
8.
Helmlinger
,
G.
,
Berk
,
B. C.
, and
Nerem
,
R. M.
, 1995, “
Calcium Responses of Endothelial Cell Monolayers Subjected to Pulsatile and Steady Laminar Flow Differ
,”
Am. J. Physiol.
0002-9513,
269
, pp.
C367
C375
.
9.
Malek
,
A.
, and
Izumo
,
S.
, 1992, “
Physiological Fluid Shear Stress Caused Downregulation of Endothelin-1 mRNA in Bovine Aortic Endothelium
,”
Am. J. Physiol.
0002-9513,
263
, pp.
C389
C396
.
10.
Mooney
,
M.
, and
Ewart
,
R. H.
, 1934, “
The Conicylindrical Vviscometer
,”
Physics (N.Y.)
0092-8437,
5
, pp.
350
354
.
11.
Cox
,
D. B.
, 1962, “
Radial Flow in the Cone-Plate Viscometer
,”
Nature (London)
0028-0836,
193
, p.
670
.
12.
Pelech
,
I.
, and
Shapiro
,
A. H.
, 1964, “
Flexible Disk Rotating on a Gas Film Next to a Wall
,”
Trans. ASME
0097-6822,
31
, pp.
577
584
.
13.
Walters
,
K.
, and
Waters
,
N. D.
, 1966, “
Polymer Systems, Deformation and Flow
,” In Proceedings of the Brit. Soc. Rheol., Macmillan.
14.
Cheng
,
D. C.-H.
, 1968, “
The Effect of Secondary Flow on the Viscosity Measurement Using a Cone-and-Plate Viscometers
,”
Chem. Eng. Sci.
0009-2509,
23
, pp.
895
899
.
15.
Fewell
,
M. E.
, and
Hellum
,
J. D.
, 1977, “
The Secondary Flow of Newtonian Fluids in Cone-and-Plate Viscometers
,”
Trans. Soc. Rheol.
0038-0032,
21
, pp.
535
565
.
16.
Turian
,
R. M.
, 1972, “
Perturbation Solution of the Steady Newtonian Flow in the Cone and Plate and Parallel Plate Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
11
, pp.
361
368
.
17.
Heuser
,
G.
, and
Krause
,
E.
, 1979, “
The Flow Field of Newtonian Fluids in Cone and Plate Viscometers with Small Gap Angles
,”
Rheol. Acta
0035-4511,
18
, pp.
531
564
.
18.
Turian
,
R. M.
, and
Bird
,
R. B.
, 1963, “
Viscous Heating in the Cone-and-Plate Viscometer-II
,”
Chem. Eng. Sci.
0009-2509,
18
, pp.
689
696
.
19.
McKinley
,
G. H.
,
Oztekin
,
A.
,
Byars
,
J. A.
, and
Brown
,
R. A.
, 1995, “
Self-Similar Spiral Instabilities in Elastic Flows Between a Cone and a Plate
,”
J. Fluid Mech.
0022-1120,
285
, pp.
123
164
.
20.
Olagunju
,
D. O.
,
Cook
,
L. P.
, and
McKinley
,
G. H.
, 2002, “
Effect of Viscous Heating on Linear Stability of Viscoelastic Cone-and-Plate Flow: Axisymmetric Case
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
102
, pp.
321
342
.
21.
Maude
,
A. D.
, and
Walters
,
K.
, 1964, “
Approximate Theory for Oscillatory Experiments with a Cone-and-Plate Viscometer
,”
Nature (London)
0028-0836,
201
, pp.
913
914
.
22.
Drasler
,
W. J.
,
Smith
II,
C. M.
, and
Keller
,
K. H.
, 1987, “
Viscoelasticity of Packed Erythrocyte Suspensions Subjected to Low Amplitude Oscillatory Deformation
,”
Biophys. J.
0006-3495,
52
, pp.
357
365
.
23.
Turian
,
R. M.
, 1977, “
Oscillatory Motion in the Cone and Plate Perturbation Analysis of Secondary Flow Effects
,”
Ind. Eng. Chem. Fundam.
0196-4313,
16
, pp.
348
356
.
24.
Davies
,
P. F.
,
Dewey
Jr.,
C. F.
,
Bussolari
,
S. R.
,
Gordon
,
E. J.
, and
Gimbrone
Jr.,
M. A.
, 1983, “
Influence of Hemodynamic Forces on Vascular Endothelial Function, In Vitro Studies of Shear Stress and Pinocytosis in Bovine Aortic Cells
,”
J. Clin. Invest.
0021-9738,
73
, pp.
1121
1129
.
25.
Blackman
,
B. R.
,
Garcia-Cardena
,
G.
, and
Gimbrone
Jr.,
M. A.
, 2002, “
A New In Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
397
407
.
26.
Barbee
,
K. A.
,
Mundel
,
T.
,
Lal
,
R.
, and
Davies
,
P. F.
, 1995, “
Subcellular Distribution of Shear Stress at the Surface of Flow-Aligned and Nonaligned Endothelial Monolayers
,”
Am. J. Physiol.
0002-9513,
268
, pp.
H1765
H1772
.
27.
Yamaguchi
,
T.
,
Yamamoto
,
Y
, and
Liu
,
H.
, 2000, “
Computational Mechanical Model Studies on the Spontaneous Emergent Morphogenesis of the Cultured Endothelial Cells
,”
J. Biomech.
0021-9290,
33
, pp.
115
126
.
You do not currently have access to this content.