Motivated by biometric applications, we analyze oscillatory flow in a cone-and-plate geometry. The cone is rotated in a simple harmonic way on a stationary plate. Based on assuming that the angle between the cone and plate is small, we describe the flow analytically by a perturbation method in terms of two small parameters, the Womersley number and the Reynolds number, which account for the influences of the local acceleration and centripetal force, respectively. Working equations for the shear stresses induced both by laminar primary and secondary flows on the plate surface are presented.
Issue Section:
Fluids/Heat/Transport
1.
Butler
, D. L.
, Goldstein
, S. A.
, and Guilak
, F.
, 2000, “Functional Tissue Engineering: the Role of Biomechanics
,” J. Biomech. Eng.
0148-0731, 122
, pp. 570
–575
.2.
Brown
, T. D.
, 2000, “Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,” J. Biomech.
0021-9290, 33
, pp. 3
–14
.3.
Dewey
Jr., C. F.
, Bussolari
, S. R.
, Gimbrone
Jr., M. A.
, and Davies
, P. F.
1981, “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,” J. Biomech. Eng.
0148-0731, 103
, pp. 177
–185
.4.
Sdougos
, H. P.
, Bussolari
, S. R.
, and Dewey
, C. F.
, 1984, “Secondary Flow and Turbulence in a Cone-and-Plate Device
,” J. Fluid Mech.
0022-1120, 138
, pp. 379
–404
.5.
Malek
, A.
, and Izumo
, S.
, 1995, “Control of Endothelial Cell Gene Expression by Flow
,” J. Biomech.
0021-9290, 28
, pp. 1515
–1528
.6.
Blackman
, B. R.
, Thibault
, L. E.
, and Barbee
, K. A.
, 2000, “Selective Modulation of Endothelial Cell [Ca2+]i Response to Flow by the Onset Rate of Shear Stress
,” J. Biomech. Eng.
0148-0731, 122
, pp. 274
–282
.7.
Hochleitner
, B. W.
, Hochleitner
, E. O.
, Obrist
, P.
, Eberl
, T.
, Amberger
, A.
, Xu
, Q.
, Margreiter
, R.
, and Wick
, G.
, 2000, “Fluid Shear Stress Induced Heat Shock Protein 60 Expression in Endothelial Cells In Vitro and In Vivo
,” Arterioscler., Thromb., Vasc. Biol.
1079-5642, 20
, pp. 617
–623
.8.
Helmlinger
, G.
, Berk
, B. C.
, and Nerem
, R. M.
, 1995, “Calcium Responses of Endothelial Cell Monolayers Subjected to Pulsatile and Steady Laminar Flow Differ
,” Am. J. Physiol.
0002-9513, 269
, pp. C367
–C375
.9.
Malek
, A.
, and Izumo
, S.
, 1992, “Physiological Fluid Shear Stress Caused Downregulation of Endothelin-1 mRNA in Bovine Aortic Endothelium
,” Am. J. Physiol.
0002-9513, 263
, pp. C389
–C396
.10.
Mooney
, M.
, and Ewart
, R. H.
, 1934, “The Conicylindrical Vviscometer
,” Physics (N.Y.)
0092-8437, 5
, pp. 350
–354
.11.
Cox
, D. B.
, 1962, “Radial Flow in the Cone-Plate Viscometer
,” Nature (London)
0028-0836, 193
, p. 670
.12.
Pelech
, I.
, and Shapiro
, A. H.
, 1964, “Flexible Disk Rotating on a Gas Film Next to a Wall
,” Trans. ASME
0097-6822, 31
, pp. 577
–584
.13.
Walters
, K.
, and Waters
, N. D.
, 1966, “Polymer Systems, Deformation and Flow
,” In Proceedings of the Brit. Soc. Rheol., Macmillan.14.
Cheng
, D. C.-H.
, 1968, “The Effect of Secondary Flow on the Viscosity Measurement Using a Cone-and-Plate Viscometers
,” Chem. Eng. Sci.
0009-2509, 23
, pp. 895
–899
.15.
Fewell
, M. E.
, and Hellum
, J. D.
, 1977, “The Secondary Flow of Newtonian Fluids in Cone-and-Plate Viscometers
,” Trans. Soc. Rheol.
0038-0032, 21
, pp. 535
–565
.16.
Turian
, R. M.
, 1972, “Perturbation Solution of the Steady Newtonian Flow in the Cone and Plate and Parallel Plate Systems
,” Ind. Eng. Chem. Fundam.
0196-4313, 11
, pp. 361
–368
.17.
Heuser
, G.
, and Krause
, E.
, 1979, “The Flow Field of Newtonian Fluids in Cone and Plate Viscometers with Small Gap Angles
,” Rheol. Acta
0035-4511, 18
, pp. 531
–564
.18.
Turian
, R. M.
, and Bird
, R. B.
, 1963, “Viscous Heating in the Cone-and-Plate Viscometer-II
,” Chem. Eng. Sci.
0009-2509, 18
, pp. 689
–696
.19.
McKinley
, G. H.
, Oztekin
, A.
, Byars
, J. A.
, and Brown
, R. A.
, 1995, “Self-Similar Spiral Instabilities in Elastic Flows Between a Cone and a Plate
,” J. Fluid Mech.
0022-1120, 285
, pp. 123
–164
.20.
Olagunju
, D. O.
, Cook
, L. P.
, and McKinley
, G. H.
, 2002, “Effect of Viscous Heating on Linear Stability of Viscoelastic Cone-and-Plate Flow: Axisymmetric Case
,” J. Non-Newtonian Fluid Mech.
0377-0257, 102
, pp. 321
–342
.21.
Maude
, A. D.
, and Walters
, K.
, 1964, “Approximate Theory for Oscillatory Experiments with a Cone-and-Plate Viscometer
,” Nature (London)
0028-0836, 201
, pp. 913
–914
.22.
Drasler
, W. J.
, Smith
II, C. M.
, and Keller
, K. H.
, 1987, “Viscoelasticity of Packed Erythrocyte Suspensions Subjected to Low Amplitude Oscillatory Deformation
,” Biophys. J.
0006-3495, 52
, pp. 357
–365
.23.
Turian
, R. M.
, 1977, “Oscillatory Motion in the Cone and Plate Perturbation Analysis of Secondary Flow Effects
,” Ind. Eng. Chem. Fundam.
0196-4313, 16
, pp. 348
–356
.24.
Davies
, P. F.
, Dewey
Jr., C. F.
, Bussolari
, S. R.
, Gordon
, E. J.
, and Gimbrone
Jr., M. A.
, 1983, “Influence of Hemodynamic Forces on Vascular Endothelial Function, In Vitro Studies of Shear Stress and Pinocytosis in Bovine Aortic Cells
,” J. Clin. Invest.
0021-9738, 73
, pp. 1121
–1129
.25.
Blackman
, B. R.
, Garcia-Cardena
, G.
, and Gimbrone
Jr., M. A.
, 2002, “A New In Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,” J. Biomech. Eng.
0148-0731, 124
, pp. 397
–407
.26.
Barbee
, K. A.
, Mundel
, T.
, Lal
, R.
, and Davies
, P. F.
, 1995, “Subcellular Distribution of Shear Stress at the Surface of Flow-Aligned and Nonaligned Endothelial Monolayers
,” Am. J. Physiol.
0002-9513, 268
, pp. H1765
–H1772
.27.
Yamaguchi
, T.
, Yamamoto
, Y
, and Liu
, H.
, 2000, “Computational Mechanical Model Studies on the Spontaneous Emergent Morphogenesis of the Cultured Endothelial Cells
,” J. Biomech.
0021-9290, 33
, pp. 115
–126
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.