A Spiral Computerized Tomography (CT) scan of the aorta were obtained from a single subject and three model variations were examined. Computational fluid dynamics modeling of all three models showed variations in the velocity contours along the aortic arch with differences in the boundary layer growth and recirculation regions. Further downstream, all three models showed very similar velocity profiles during maximum velocity with differences occurring in the decelerating part of the pulse. Flow patterns obtained from transient 3-D computational fluid dynamics are influenced by different reconstruction methods and the pulsatility of the flow. Caution is required when analyzing models based on CT scans.

1.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
, 2002, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
378
387
.
2.
Pedley
,
T. J.
, 1980,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
, Cambridge, UK, Chap. 4.
3.
Talbot
,
L.
, and
Gong
,
K. O.
, 1983, “
Pulsatile Entrance Flow in a Curved Pipe
,”
J. Fluid Mech.
0022-1120,
127
, pp.
1
25
.
4.
Yearwood
,
T. L.
, and
Chandran
,
K. B.
, 1984, “
Physiological Pulsatile Flow Experiments in a Model of the Human Aortic Arch
,”
J. Biomech.
0021-9290,
15
(
9
), pp.
683
704
.
5.
Chandran
,
K. B.
, and
Yearwood
,
T. L.
, 1981, “
Experimental Study of Physiologcial Pulsatile Flow in a Curved Tube
,”
J. Fluid Mech.
0022-1120,
111
, pp.
59
85
.
6.
Chandran
,
K. B
, 1993, “
Flow Dynamics in the Human Aorta
,”
J. Biomech. Eng.
0148-0731,
115
, pp.
611
616
.
7.
Tortoli
,
P.
,
Bambi
,
G.
,
Guidi
,
F.
, and
Muchada
,
R.
, 2002, “
Toward a Better Quantitative Measurement of Aortic Flow
,”
Ultrasound Med. Biol.
0301-5629,
28
(
2
), pp.
249
257
.
8.
Fung
,
Y. C.
, 1997,
Biomechanics Circulation
,
Springer
, New York, Second Edition, Chap 3.
9.
Weydahl
,
E. S.
, and
Moore
,
J. E.
, 2001, “
Dynamic Curvature Strongly affects Wall Shear Rates in a Coronary Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
34
, pp.
1189
1196
.
10.
Papaharilaou
,
Y.
,
Doorly
,
D. J.
, and
Sherwin
,
S. J.
, 2002, “
The Influence of Out-of-Plane Geometry on Pulsatile Flow within a Distal End-to-Side Anastomosis
,”
J. Biomech.
0021-9290,
35
, pp.
1225
1239
.
11.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
109
120
.
12.
Berthier
,
B.
,
Bouzerar
,
R.
, and
Legallais
,
C.
, 2002, “
Blood Flow Patterns in an Anatomically Realistic Coronary Vessel: Influence of Three Different Reconstruction Methods
,”
J. Biomech.
0021-9290,
35
, pp.
1347
1356
.
13.
Naruse
,
T.
, and
Tanishita
,
K.
, 1996, “
Large Curvature Effect on Pulsatile Entrance Flow in a Curved Tube: Model Experiment Simulating Blood Flow in an Aortic Arch
,”
J. Biomech. Eng.
0148-0731,
118
, pp.
180
186
.
14.
Ballyk
,
P. D.
,
Walsh
,
C.
,
Butany
,
J.
, and
Ojha
,
M.
, 1998, “
Compliance Mismatch may Promote Graft-Artery Intimal Hyperplasia by altering Suture-Line Stresses
,”
J. Biomech.
0021-9290,
31
, pp.
229
237
.
15.
Deplano
,
V.
, and
Souffi
,
M.
, 1999, “
Experimental and Numerical Study of Pulsatile Flows through Stenosis: Wall Shear Stress Analysis
,”
J. Biomech.
0021-9290,
32
, pp.
1081
1090
.
16.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Parkash
,
S.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 1999, “
A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
265
272
.
17.
Lin
,
Y. H.
, and
Shung
,
K.
, 1999, “
Ultrasonic Backscattering from Porcine Whole Blood of Varying Hematocrit and Shear Rate Under Pulsatile Flow
,”
Ultrasound Med. Biol.
0301-5629,
25
(
7
), pp.
1151
1158
.
18.
The French Study of Aortic Plaques in Stroke Group
, 1996, “
Atherosclerotic Disease of the Aortic Arch as a Risk Factor for Recurrent Ischemic Stroke
,”
N. Engl. J. Med.
0028-4793,
334
, pp.
1216
21
.
19.
Choukroun
,
E. M.
,
Labrousse
,
L. M.
,
Madonna
,
F. P.
, and
Deville
,
C.
, 2002, “
Mobile Thrombus of the Thoracic Aorta: Diagnosis and Treatment in 9 Cases
,”
Ann. Vasc. Surg.
0890-5096,
16
(
6
), pp.
714
22
.
20.
Elkind
,
M. S.
,
Sciacca
,
R.
,
Boden-Albala
,
B.
,
Homma
,
S.
, and
Di Tullio
,
MR.
, 2002, “
Leukocyte Count is Associated with Aortic Arch Plaque Thickness
.”
Stroke
0039-2499,
33
(
11
), pp.
2587
92
21.
Sugioka
,
K.
,
Hozumi
,
T.
,
Sciacca
,
R. R.
,
Miyake
,
Y.
,
Titova
,
I.
,
Gaspard
,
G.
,
Sacco
,
R. L.
,
Homma
,
S.
, and
Di Tullio
,
M. R.
, 2002, “
Impact of Aortic Stiffness on Ischemic Stroke in Elderly Patients
,”
Stroke
0039-2499,
33
(
8
), pp.
2077
81
.
22.
Weinberger
,
J.
, 2002, “
Noninvasive Imaging of Atherosclerotic Plaque in the Arch of the Aorta with Transcutaneous B-mode Ultrasonography
,”
Neuroimaging Clin. N. Am.
1052-5149,
12
(
3
), pp.
373
80
.
23.
Cohen
,
A.
, and
Amarenco
,
P.
, 2002, “
Atherosclerosis of the Thoracic Aorta: from Risk Stratification to Treatment
,”
Am. J. Cardiol.
0002-9149,
90
(
12
), pp.
1333
1335
.
24.
Tunick
,
P. A.
,
Nayar
,
A. C.
,
Goodkin
,
G. M.
,
Mirchandani
,
S.
,
Francescone
,
S.
,
Rosenzweig
,
B. P.
,
Freedberg
,
R. S.
,
Katz
,
E. S.
,
Applebaum
,
R. M.
,
Kronzon
I.
, and NYU Atheroma Group, 2002, “
Effect of Treatment on the Incidence of Stroke and other Emboli in 519 patients with Severe Thoracic Aortic Plaque
,”
Am. J. Cardiol.
0002-9149,
90
(
12
), pp.
1320
1325
.
25.
Hart
,
J. D.
, 1997,
Nonparametric Smoothing and Lack-of-Fit Tests
,
Springer-Verlag New York, Inc
, first edition.
26.
Fahrmeir
,
L.
, and
Tutz
,
G.
, 2001,
Multivariate Statistical Modeling Based on Generalized Linear Models
,
Springer-Verlag New York, Inc
, second edition.
27.
Wand
,
M. P.
, and
Jones
,
M. C.
, 1995,
Kernel Smoothing
,
Chapman & Hall
, first edition.
28.
O’Brien
,
T.
,
Morris
,
L.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, “
Injection Moulded Models of Major and Minor Arteries—the Variability of Model Wall Thickness due to Casting Technique
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119 (in press).
29.
Moore
,
J. A.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
, 1998, “
Computational Blood Flow Modelling: Errors Associated with Reconstructing Finite Element Models from Magnetic Resonance Images
,”
J. Biomech.
0021-9290,
31
, pp.
179
184
.
30.
Moore
,
J. A.
, 1998,
Computational Blood Flow Modelling In Realistic Arterial Geometries
. University of Toronto, Department of Mechanical Engineering: Ph.D. thesis.
31.
Nichols
,
W.
, and
O’Rourke
,
M. F.
, 1998,
McDonald’s Blood Flow in Arteries
,
Edward Arnold
, London, fourth edition.
32.
Nerem
,
R. M.
,
Rumberger
,
M. J. A.
,
Gross
,
D. R.
,
Hamlin
,
R. L.
, and
Geiger
,
G. L.
, 1974, “
Hot-Film Anemometry Velocity Measurements of Arterial Blood Flow in Horses
,”
Circ. Res.
0009-7330,
10
, pp.
301
313
.
33.
Falsetti
,
H.
,
Kiser
,
K. M.
,
Francis
,
G. P.
, and
Belmore
,
E. R.
, 1972, “
Sequential Velocity Development in the Ascending and Descending Aorta of the Dog
,”
Circ. Res.
0009-7330,
21
, pp.
328
338
.
34.
Seed
,
W. A.
, and
Wood
,
N. B.
, 1971, “
Velocity Patterns in the Aorta
,”
Cardiovasc. Res.
0008-6363,
5
, pp.
319
330
.
35.
Nerem
,
R. M.
,
Seed
,
W. A.
, and
Wood
,
N. B.
, 1972. “
An experimental study of the velocity distribution and transition to turbulence in the aorta
,”
J. Fluid Mech.
0022-1120
52
, pp.
137
160
.
36.
Prakash
,
S.
, and
Ethier
,
C. R.
, 2001. “
Requirements for Mesh Resolution in 3D Computational Hemodynamics
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
134
144
.
37.
Dean
,
W. R.
, 1927, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
0031-8086,
20
(
7
), pp.
208
223
.
38.
Dean
,
W. R.
, 1928, “
The Streamline Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
0031-8086,
30
(
7
), pp.
673
693
.
39.
Fry
,
D. L.
, 1969, “
Certain Histological and Chemical Responses of the Vascular Interface to acutely Induced Mechanical Stress in the Aorta of the Dog
,”
Circ. Res.
0009-7330,
24
, pp.
93
108
.
40.
Choi
,
V. S.
,
Talbot
,
L.
, and
Cornet
,
I.
, 1979, “
Experimental Study of Wall Shear Rates in the Entry Region of a Curved Tube
,”
J. Fluid Mech.
0022-1120,
93
, pp.
229
274
.
You do not currently have access to this content.