Measuring the microscopic mechanical properties of bone tissue is important in support of understanding the etiology and pathogenesis of many bone diseases. Knowledge about these properties provides a context for estimating the local mechanical environment of bone related cells that coordinate the adaptation to loads experienced at the whole organ level. The objective of this study was to determine the effects of experimental testing parameters on nanoindentation measures of lamellar-level bone mechanical properties. Specifically, we examined the effect of specimen preparation condition, indentation depth, repetitive loading, time delay, and displacement rate. The nanoindentation experiments produced measures of lamellar elastic moduli for human cortical bone (average value of 17.7±4.0GPa for osteons and 19.3±4.7GPa for interstitial bone tissue). In addition, the hardness measurements produced results consistent with data in the literature (average 0.52±0.15GPa for osteons and 0.59±0.20GPa for interstitial bone tissue). Consistent modulus values can be obtained from a 500-nm-deep indent. The results also indicated that the moduli and hardnesses of the dry specimens are significantly greater (22.6% and 56.9%, respectively) than those of the wet and wet and embedded specimens. The latter two groups were not different. The moduli obtained at a 5nms loading rate were significantly lower than the values at the 10- and 20nms loading rates while the 10- and 20nms rates were not significantly different. The hardness measurements showed similar rate-dependent results. The preliminary results indicated that interstitial bone tissue has significantly higher modulus and hardness than osteonal bone tissue. In addition, a significant correlation between hardness and elastic modulus was observed.

1.
Heaney
,
R. P.
, 1993, “
Is There a Role for Bone Quality in Fragility Fractures?
,”
Calcif. Tissue Int.
0171-967X,
53
(
Suppl 1
), pp.
S3
S6
.
2.
Weaver
,
J. K.
, 1966, “
The Microscopic Hardness of Bone
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
48
(
2
), pp.
273
288
.
3.
Pugh
,
J. W.
,
Rose
,
R. M.
, and
Radin
,
E. L.
, 1973, “
A Structural Model for the Mechanical Behavior of Trabecular Bone
,”
J. Biomech.
0021-9290,
6
(
6
), pp.
657
670
.
4.
Runkle
,
J. C.
, and
Pugh
,
J.
, 1975, “
The Micro-mechanics of Cancellous Bone. II. Determination of the Elastic Modulus of Individual Trabeculae by a Buckling Analysis
,”
Bull. Hosp. Jt. Dis.
0018-5647,
36
(
1
), pp.
2
10
.
5.
Townsend
,
P. R.
,
Rose
,
R. M.
, and
Radin
,
E. L.
, 1975, “
Buckling Studies of Single Human Trabeculae
,”
J. Biomech.
0021-9290,
8
(
3-4
), pp.
199
201
.
6.
Williams
,
J. L.
, and
Lewis
,
J. L.
, 1982, “
Properties and an Anisotropic Model of Cancellous Bone from the Proximal Tibial Epiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
104
(
1
), pp.
50
56
.
7.
Beaupre
,
G. S.
, and
Hayes
,
W. C.
, 1985, “
Finite Element Analysis of a Three-dimensional Open-celled Model for Trabecular Bone
,”
ASME J. Biomech. Eng.
0148-0731,
107
(
3
), pp.
249
256
.
8.
Ashman
,
R. B.
, and
Rho
,
J. Y.
, 1988, “
Elastic Modulus of Trabecular Bone Material
,”
J. Biomech.
0021-9290,
21
(
3
), pp.
177
181
.
9.
Hodgskinson
,
R.
,
Currey
,
J. D.
, and
Evans
,
G. P.
, 1989, “
Hardness, an Indicator of the Mechanical Competence of Cancellous Bone
,”
J. Orthop. Res.
0736-0266,
7
(
5
), pp.
754
758
.
10.
Kuhn
,
J. L.
, et al.
, 1989, “
The Limitations of Canine Trabecular Bone as a Model for Human: A Biomechanical Study
,”
J. Biomech.
0021-9290,
22
(
2
), pp.
95
107
.
11.
Mente
,
P. L.
, and
Lewis
,
J. L.
, 1989, “
Experimental Method for the Measurement of the Elastic Modulus of Trabecular Bone Tissue
,”
J. Orthop. Res.
0736-0266,
7
(
3
), pp.
456
461
.
12.
Ryan
,
S. D.
, and
Williams
,
J. L.
, 1989, “
Tensile Testing of Rodlike Trabeculae Excised from Bovine Femoral Bone
,”
J. Biomech.
0021-9290,
22
(
4
), pp.
351
355
.
13.
Choi
,
K.
, et al.
, 1990, “
The Elastic Moduli of Human Subchondral, Trabecular, and Cortical Bone Tissue and the Size-dependency of Cortical Bone Modulus
,”
J. Biomech.
0021-9290,
23
(
11
), pp.
1103
1113
.
14.
Jensen
,
K. S.
, and
Mosekilde
L.
, 1990, “
A Model of Vertebral Trabecular Bone Architecture and its Mechanical Properties
,”
Bone
,
11
(
6
), pp.
417
423
.
15.
Choi
,
K.
, and
Goldstein
,
S. A.
, 1992, “
A Comparison of the Fatigue Behavior of Human Trabecular and Cortical Bone Tissue
,”
J. Biomech.
0021-9290,
25
(
12
), pp.
1371
1381
.
16.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
, 1993, “
Young’s Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
0021-9290,
26
(
2
), pp.
111
119
.
17.
Ko
,
C.-C.
,
Douglas
,
W. H.
, and
Cheng
,
Y. S.
, 1995, “
Intrinsic Mechanical Competence of Cortical and Trabecular Bone Measured by Nanoindentation and Microindentation Probes
,” 415–416,
1995 Bioengineering Conference, ASME
,
Hochmuth
,
R. M.
,
Langrana
,
N. A.
, and
Hefzy
,
M. S.
,
Beaver Creek
, Colorado,
BED-29
, pp.
415
416
.
18.
Shieh
,
S. J.
, et al.
, 1995, “
High Resolution Ultrasonic Measurements of the Material Properties of Cortical and Trabecular Bone in the Human Vertebrae
,” 413–414,
1995 Bioengineering Conference, ASME
,
Hochmuth
,
R. M.
,
Langrana
,
N. A.
, and
Hefzy
,
M. S.
,
Beaver Creek
, Colorado,
BED-29
, pp.
413
414
.
19.
Guo
,
X. E.
, and
Goldstein
,
S. A.
, 1997, “
Is Trabecular Bone Tissue Different from Cortical Bone Tissue?
,”
Forma
,
12
(
3-4
), pp.
185
196
.
20.
Carlstrom
,
D.
, 1954, “
Micro-hardness Measurements on Single Haversian Systems in Bone
,”
Experientia
0014-4754,
10
(
4
), pp.
171
172
.
21.
Amprino
,
R.
, 1958, “
Investigations on Some Physical Properties of Bone Tissue
,”
Acta Anat. (Basel)
0001-5180,
34
(
3
), pp.
161
186
.
22.
Currey
,
J. D.
, and
Brear
,
K.
, 1990, “
Hardness, Young’s Modulus and Yield Stress in Mammalian Mineralized Tissues
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
1
, pp.
14
20
.
23.
Evans
,
G. P.
, et al.
, 1990, “
Microhardness and Young’s Modulus in Cortical Bone Exhibiting a Wide Range of Mineral Volume Fractions, and in a Bone Analogue
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
1
, pp.
38
43
.
24.
Blackburn
,
J.
, et al.
, 1992, “
Mechanical Properties of Microcallus in Human Cancellous Bone
,”
J. Orthop. Res.
0736-0266,
10
(
2
), pp.
237
246
.
25.
Doerner
,
M. F.
, and
Nix
,
W. D.
, 1986, “
A Method for Interpreting the Data from Depth-sensing Indentation Instruments
,”
J. Mater. Res.
0884-2914,
1
(
4
), pp.
601
609
.
26.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
(
6
), pp.
1564
1583
.
27.
Rho
,
J. Y.
, et al.
, 1999, “
Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation
,”
J. Biomed. Mater. Res.
0021-9304,
45
(
1
), pp.
48
54
.
28.
Zysset
,
P. K.
, et al.
, 1999, “
Elastic Modulus and Hardness of Human Cortical and Trabecular Lamellae Measured by Nanoindentation
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1005
1012
.
29.
Hoffler
,
C. E.
, et al.
, 2000, “
Age, Gender, and Bone Lamellae Elastic Moduli
,”
J. Orthop. Res.
0736-0266,
18
(
3
), pp.
432
437
.
30.
Hoffler
,
C. E.
, et al.
, 2000, “
Heterogeneity of Bone Lamellar-level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.
31.
Swadener
,
J. G.
,
Rho
,
J.-Y.
, and
Pharr
,
G. M.
, 2001, “
Effects of Anisotropy on Elastic Moduli Measured by Nanoindentation in Human Tibial Cortical Bone
,”
J. Biomed. Mater. Res.
0021-9304,
57
, pp.
108
112
.
32.
Rho
,
J. Y.
, et al.
, 2002, “
Microstructural Elasticity and Regional Heterogeneity in Human Femoral Bone of Various Ages Examined by Nanoindentation
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
189
198
.
33.
Roy
,
M.
, et al.
, 1996, “
Variations of Young’s Modulus and Hardness in Human Lumbar Vertebrae Measured by Nanoindentation
,”
Advances in Bioengineering
,
S. Rastegar
, Atlanta, Georgia,
BED-33
, pp.
385
386
.
34.
Rho
,
J. Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1997, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
0142-9612,
18
(
20
), pp.
1325
1330
.
35.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1974, “
Review Article. The Mechanical Properties of Cortical Bone
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
(
5
), pp.
1001
1022
.
36.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1976, “
Bone Compressive Strength: The Influence of Density and Strain Rate
,”
Science
0036-8075,
194
(
4270
), pp.
1174
1176
.
37.
Wright
,
T. M.
, and
Hayes
,
W. C.
, 1976, “
Tensile Testing of Bone Over a Wide Range of Strain Rates: Effects of Strain Rate, Microstructure and Density
,”
Med. Biol. Eng.
0025-696X,
14
(
6
), pp.
671
680
.
38.
Linde
,
F.
, et al.
, 1991, “
Mechanical Properties of Trabecular Bone. Dependency on Strain Rate
,”
J. Biomech.
0021-9290,
24
(
9
), pp.
803
809
.
39.
Mackie
,
I. G.
, et al.
, 1989, “
Human Bone Microstructure Studied by Collagenase Etching
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
71
(
3
), pp.
509
513
.
40.
Sneddon
,
I. N.
, 1965, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
0020-7225,
3
, pp.
47
57
.
41.
King
,
R. B.
, 1987, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
1657
1664
.
42.
Pharr
,
G. M.
,
Oliver
,
W. C.
, and
Brotzen
,
F. R.
, 1992, “
On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation
,”
J. Mater. Res.
0884-2914,
7
(
3
), pp.
613
617
.
43.
Zar
,
J. H.
, 1999,
Biostatistical Analysis
,
Prentice-Hall, Inc.
, Upper Saddle River, NJ.
44.
Rho
,
J.-Y.
, and
Pharr
,
G. M.
, 1999, “
Effects of Drying on the Mechanical Properties of Bovine Femur Measured by Nanoindentation
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
10
, pp.
485
488
.
45.
Fondrk
,
M.
, et al.
, 1988, “
Some Viscoplastic Characteristics of Bovine and Human Cortical Bone [see comments]
,”
J. Biomech.
0021-9290,
21
(
8
), pp.
623
630
.
46.
Ziv
,
V.
,
Wagner
,
H. D.
, and
Weiner
,
S.
, 1996, “
Microstructure-microhardness Relations in Parallel-fibered and Lamellar Bone
,”
Bone
,
18
(
5
), pp.
417
428
.
47.
Ascenzi
,
A.
, and
Bonucci
,
E.
, 1967, “
The Tensile Properties of Single Osteons
,”
Anat. Rec.
0003-276X,
158
(
4
), pp.
375
386
.
48.
Ascenzi
,
A.
, and
Bonucci
,
E.
, 1968, “
The Compressive Properties of Single Osteons
,”
Anat. Rec.
0003-276X,
161
(
3
), pp.
377
391
.
49.
Ascenzi
,
A.
, and
Bonucci
,
E.
, 1977, “
An Investigation of the Mechanical Anisotropy of the Alternately-Structured Osteons
,”
Calcif. Tissue Res.
0008-0594,
22
(
Suppl.
), pp.
553
555
.
50.
Ascenzi
,
A.
, et al.
, 1986, “
Relationship Between Mechanical Properties and Structure in Secondary Bone
,”
Connect. Tissue Res.
0300-8207,
15
(
1-2
), pp.
73
76
.
51.
Ascenzi
,
A.
, 1988, “
The Micromechanics Versus the Macromechanics of Cortical Bone—a Comprehensive Presentation
,”
ASME J. Biomech. Eng.
0148-0731,
110
(
4
), pp.
357
363
.
52.
Keaveny
,
T. M.
, et al.
, 1994, “
Mechanical Behavior of Damaged Trabecular Bone
,”
J. Biomech.
0021-9290,
27
(
11
), pp.
1309
1318
.
53.
Courtney
,
A. C.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
, 1996, “
Age-related Differences in Post-yield Damage in Human Cortical Bone. Experiment and Model
,”
J. Biomech.
0021-9290,
29
(
11
), pp.
1463
1471
.
54.
Zysset
,
P. K.
, and
Curnier
,
A.
, 1996, “
A 3D Damage Model for Trabecular Bone Based on Fabric Tensors
,”
J. Biomech.
0021-9290,
29
(
12
), pp.
1549
1558
.
55.
Pidaparti
,
R. M.
, and
Vogt
,
A.
, 2002, “
Experimental Investigation of Poisson’s Ratio as a Damage Parameter for Bone Fatigue
,”
J. Biomed. Mater. Res.
0021-9304,
59
, pp.
282
287
.
56.
Zysset
,
P. K.
,
Goulet
,
R. W.
, and
Hollister
,
S. J.
, 1998, “
A Global Relationship Between Trabecular Bone Morphology and Homogenized Elastic Properties
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
640
646
.
57.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
(
6
), pp.
393
405
.
You do not currently have access to this content.