In this study, we extend the penetration method, previously introduced to simulate contact of linear hydrated tissues in an efficient manner with the finite element method, to problems of nonlinear biphasic tissues in contact. This paper presents the derivation of contact boundary conditions for a biphasic tissue with hyperelastic solid phase using experimental kinematics data. Validation of the method for calculating these boundary conditions is demonstrated using a canonical biphasic contact problem. The method is then demonstrated on a shoulder joint model with contacting humerus and glenoid tissues. In both the canonical and shoulder examples, the resulting boundary conditions are found to satisfy the kinetic continuity requirements of biphasic contact. These boundary conditions represent input to a three-dimensional nonlinear biphasic finite element analysis; details of that finite element analysis will be presented in a manuscript to follow.

1.
An
,
K.
,
Chao
,
E. Y. S.
, and
Kaufman
,
K. R.
, 1997, “
Analysis of Muscle and Joint Loads
,” in
Basic Orthopaedic Biomechanics
,
V. C.
Mow
and
W. C.
Hayes
, eds.,
Lippincott-Raven
, Philadelphia, pp.
1
37
.
2.
Hale
,
J. E.
,
Rudert
,
M. J.
, and
Brown
,
T. D.
, 1993, “
Indentation Assessment of Biphasic Mechanical Property Deficits in Size-Dependent Osteochondral Defect Repair
,”
J. Biomech.
0021-9290,
26
, pp.
1319
1325
.
3.
Schreppers
,
G. J. M. A.
,
Sauren
,
A. A. H. J.
, and
Huson
,
A.
, 1990, “
A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
204
, pp.
53
59
.
4.
Tissakht
,
M.
, and
Ahmed
,
A. M.
, 1992, “
Parametric Study Using Different Elastic and Poroelastic Axisymmetric Models of the Femur-Meniscus-Tibia Unit
,” in
Advances in Bionegineering, Winter Annual Meeting of ASME
,
M. W.
Bidez
, ed.,
ASME
, New York, BED-22, pp.
241
244
.
5.
Tissakht
,
M.
,
Marchand
,
F.
, and
Ahmed
,
A. M.
, 1991, “
Non-Linear Finite Element Analysis of the Knee Menisci: A Composite Fiber-Reinforced Model
,” in
Transactions, 37th Orthopaedic Research Society Meeting
,
16
, pp.
294
.
6.
Yu
,
H.
, and
Stone
,
J. S.
, 1998, “
Viscoelastic Finite Element Contact Analysis of Articular Joints
,” in
Proceedings of the 1998 Bioengineering Conference
,
A. P.
Yoganathan
, ed.,
ASME
, New York, BED-39, pp.
217
218
.
7.
Dunbar
,
W.
,
Ün
,
K.
,
Donzelli
,
P.
, and
Spilker
,
R.
, 2001, “
An Evaluation of Three Dimensional Diarthrodial Joint Contact Using Penetration Data and the Finite Element Method
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
333
340
.
8.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
9.
Almeida
,
E. S.
, 1995, “
Finite Element Formulations for Biological Soft Hydrated Tissues Under Finite Deformation
,” Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY.
10.
Lai
,
W. M.
, and
Mow
,
V. C.
, 1980, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
0006-355X,
17
, pp.
111
123
.
11.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME J. Biomech. Eng.
0148-0731,
111
, pp.
78
87
.
12.
Ateshian
,
G. A.
, 1994, “
A Theoretical Model for Boundary Friction in Articular Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
22
, pp.
63
.
13.
Holmes
,
M.
, and
Mow
,
V.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
, pp.
1145
1156
.
14.
Wang
,
V. M.
,
Mow
,
V. C.
,
Riamondo
,
R. A.
, and
Flatow
,
E. L.
, “
The Effects of Rotator Cuff Tears and the Long Head of the Biceps on Glenohumeral Kinematics
,” in
1996 Advances in Bioengineering
,
S.
Rastegar
, Editor 1996,
ASME
, New York, pp.
175
176
.
15.
Ateshian
,
G. A.
,
Soslowsky
,
L. J.
, and
Mow
,
V. C.
, 1991, “
Quantitation of Articular Surface Topography and Cartilage Thickness in Knee Joints Using Stereophotogrammetry
,”
J. Biomech.
0021-9290,
24
, pp.
761
776
.
You do not currently have access to this content.