Background. The Florida manatee (Trichechus manatus latirostris) is listed as endangered by the U.S. Department of the Interior. Manatee ribs have different microstructure from the compact bone of other mammals. Biomechanical properties of the manatee ribs need to be better understood. Fracture toughness (KC) has been shown to be a good index to assess the mechanical performance of bone. Quantitative fractography can be used in concert with fracture mechanics equations to identify fracture initiating defects∕cracks and to calculate the fracture toughness of bone materials. Method of approach. Fractography is a standard technique for analyzing fracture behavior of brittle and quasi-brittle materials. Manatee ribs are highly mineralized and fracture in a manner similar to quasi-brittle materials. Therefore, quantitative fractography was applied to determine the fracture toughness of manatee ribs. Results. Average fracture toughness values of small flexure specimens from six different sizes of manatees ranged from 1.3to2.6MPa(m)12. Scanning electron microscope (SEM) images show most of the fracture origins were at openings for blood vessels and interlayer spaces. Conclusions. Quantitative fractography and fracture mechanics can be combined to estimate the fracture toughness of the material in manatee rib bone. Fracture toughness of subadult and calf manatees appears to increase as the size of the manatee increases. Average fracture toughness of the manatee rib bone materials is less than the transverse fracture toughness of human and bovine tibia and femur.

1.
Gray
,
H.
, 1973,
Anatomy of the Human Body
,
Lea & Febiger
,
Philadelphia, PA
, p.
127
.
2.
Bonde
,
R. K.
,
O’Shea
,
T. J.
, and
Beck
,
C. A.
, 1983, “
Manual of Procedures for the Salvage and Necropsy of Carcasses of the West Indian Manatee (Trichechus manatus)
,” U.S. Department of the Interior, Washington, DC, p.
113
.
3.
de Buffrenil
,
V.
,
de Ricqles
,
A.
,
Ray
,
C. E.
, and
Domning
,
D. P.
, 1990, “
Bone Histology of the Ribs of the Archaeocetes (Mammalia: Cetacea)
,”
J. Vert. Paleo.
,
10
(
4
), pp.
455
466
.
4.
Fawcett
,
D. W.
, 1942, “
The Amedullary Bones of the Florida Manatee
,”
Am. J. Anat.
0002-9106,
71
(
3
), pp.
271
309
.
5.
Domning
,
D. P.
, and
de Buffrenil
,
V.
, 1991, “
Hydrostasis in the Sirenia: Quantitative Data and Functional Interpretations
,”
Marine Mammal Sci.
0824-0469,
7
(
4
), pp.
331
368
.
6.
de Buffrenil
,
V.
, and
Schoevaert
,
D.
, 1989, “
Donnees Quantitatives et Observations Histologiques sur la Pachyostose du Squelette du Dugong, Dugong dugon (Muller) (Sirenia, Dugongidae)
,”
Can. J. Zool.
0008-4301,
67
(
9
), pp.
2107
2119
.
7.
Bonfield
,
W.
, 1987, “
Advances in the Fracture Mechanics of Cortical Bone
,”
J. Biomech.
0021-9290,
20
(
11–12
), pp.
1071
1081
.
8.
Lucksanasombool
,
P.
,
Higgs
,
W. A. J.
,
Higgs
,
R. J. E. D.
, and
Swain
,
M. V.
, 2001, “
Fracture Toughness of Bovine Bone: Influence of Orientation and Storage Media
,”
Biomaterials
0142-9612,
22
(
23
), pp.
3127
3132
.
9.
Hertzberg
,
R. W.
, 1995,
Deformation and Fracture Mechanics of Engineering Materials
,
John Wiley & Sons
,
Hoboken, NJ
, Chap. 8.
10.
Behiri
,
J. C.
, and
Bonfield
,
W.
, 1984, “
Fracture Mechanics of Bone: the Effects of Density, Specimen Thickness and Crack Velocity on Longitudinal Fracture
,”
J. Biomech.
0021-9290,
17
(
1
), pp.
25
34
.
11.
Norman
,
T. L.
,
Vashishth
,
D.
, and
Burr
,
D. B.
, 1995, “
Fracture Toughness of Human Bone under Tension
,”
J. Biomech.
0021-9290,
28
(
3
), pp.
309
320
.
12.
Wang
,
X.
, and
Agrawal
,
C. M.
, 1996, “
Fracture Toughness of Bone Using a Compact Sandwich Specimen: Effects of Sampling Sites and Crack Orientations
,”
J. Biomed. Mater. Res.
0021-9304,
33
(
1
), pp.
13
21
.
13.
Yeni
,
Y. N.
,
Brown
,
C. U.
,
Wang
,
Z.
, and
Norman
,
T. L.
, 1997, “
The Influence of Bone Morphology on Fracture Toughness of the Human Femur and Tibia
,”
Bone
,
21
(
5
), pp.
453
459
.
14.
Yeni
,
Y. N.
,
Brown
,
C. U.
, and
Norman
,
T. L.
, 1998, “
Influence of Bone Composition and Apparent Density on Fracture Toughness of the Human Femur and Tibia
,”
Bone
,
22
(
1
), pp.
79
84
.
15.
Feng
,
Z.
,
Rho
,
J.
,
Han
,
S.
, and
Ziv
,
I.
, 2000, “
Orientation and Loading Condition Dependence of Fracture Toughness in Cortical Bone
,”
Mater. Sci. Eng., C
0928-4931,
11
(
1
), pp.
41
46
.
16.
Phelps
,
J. B.
,
Hubbard
,
G. B.
,
Wang
,
X.
, and
Agrawal
,
C. M.
, 2000, “
Microstructural Heterogeneity and the Fracture Toughness of Bone
,”
J. Biomed. Mater. Res.
0021-9304,
51
(
4
), pp.
735
741
.
17.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
, 2003, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nat. Mater.
1476-1122,
2
(
3
), pp.
164
168
.
18.
Mukhopadhyay
,
A. K.
,
Datta
,
S. K.
, and
Chakraborty
,
D.
, 1999, “
Fracture Toughness of Structural Ceramics
,”
Ceram. Int.
0272-8842,
25
(
5
), pp.
447
454
.
19.
ASTM C1322, 2002, “
Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics
,” ASTM International, West Conshohocken, PA.
20.
Mecholsky
,
J. J.
, 1993, “
Quantitative Fracture Surface Analysis of Glass Materials
,”
Experimental Techniques of Glass Science
,
C. J.
Simmons
and
O. H.
El-Bayoumi
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
483
490
.
21.
Ohtsuka
,
N.
, and
Yamamoto
,
H.
, 1990, “
Characteristics of Hydrogen-Assisted Cracking Measured by the Holding-Load and Fractographic Method
,”
Quantitative Methods in Fractography
,
B. M.
Strauss
and
S. K.
Putatunda
, eds,
ASTM International
,
West Conshohocken, PA
, pp.
69
88
.
22.
Kimura
,
T.
,
Ogawa
,
K.
, and
Kamiya
,
M.
, 1977, “
Fractography of Human Intact Long Bone by Bending
,”
J. Leg Med.
0194-7648,
79
(
4
), pp.
301
310
.
23.
Corondan
,
G.
, and
Haworth
,
W. L.
, 1986, “
A Fractographic Study of Human Long Bone
,”
J. Biomech.
0021-9290,
19
(
3
), pp.
207
218
.
24.
O’Shea
,
T. J.
,
Beck
,
C. A.
,
Bonde
,
R. K.
,
Kochman
,
H. I.
, and
Odell
,
D. K.
, 1985, “
An Analysis of Manatee Mortality Patterns in Florida, 1976-81
,”
J. Wildl. Manage.
,
49
(
1
), pp.
1
11
.
25.
Jackson
,
A. P.
, 1994, “
Bone, Nacre and Other Ceramics
,”
Biomechanics—Materials: A Practical Approach
,
J. F. P.
Vincent
, ed.,
Oxford University Press
,
New York
, pp.
33
56
.
26.
Bickford
,
W. B.
, 1993,
Mechanics of Solids
,
Richard D. Irwin
,
Homewood, IL
, Chap. 7.
27.
Currey
,
J. D.
, 1969, “
The Mechanical Consequences of Variation in the Mineral Content of Bone
,”
J. Biomech.
0021-9290,
2
(
1
), pp.
1
11
.
28.
Rho
,
J. Y.
,
Kuhn-Spearing
,
L.
, and
Zioupos
,
P.
, 1998, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
1350-4533,
20
(
2
), pp.
92
102
.
29.
Martin
,
R. B.
, 1984, “
Porosity and Specific Surface of Bone
,”
Crit. Rev. Biomed. Eng.
0278-940X,
10
(
3
), pp.
179
222
.
30.
Melvin
,
J. W.
, and
Evans
,
F. G.
, 1973, “
Crack Propagation in Bone
,” ASME Biomechanics Symposium, New York.
31.
Norman
,
T. L.
,
Vashishth
,
D.
, and
Burr
,
D. B.
, 1992, “
Effect of Groove on Bone Fracture Toughness
,”
J. Biomech.
0021-9290,
25
(
12
), pp.
1489
1492
.
32.
Vashishth
,
D.
,
Behiri
,
J. C.
, and
Bonfield
,
W.
, 1997, “
Crack Growth Resistance in Cortical Bone: Concept of Microcrack Toughening
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
763
769
.
33.
Wang
,
X. D.
,
Masilamani
,
N. S.
,
Mabrey
,
J. D.
,
Alder
,
M. E.
, and
Agrawal
,
C. M.
, 1998, “
Changes in the Fracture Toughness of Bone May Not Be Reflected in Its Mineral Density, Porosity, and Tensile Properties
,”
Bone
,
23
(
1
), pp.
67
72
.
34.
Wang
,
X.
,
Shen
,
X.
,
Li
,
X.
, and
Agrawal
,
C. M.
, 2002, “
Age-Related Changes in the Collagen Network and Toughness of Bone
,”
Bone
,
31
(
1
), pp.
1
7
.
35.
De Santis
,
R.
,
Anderson
,
P.
,
Tanner
,
K. E.
,
Ambrosio
,
L.
,
Nicolais
,
L.
,
Bonfield
,
W.
, and
Davis
,
G. R.
, 2000, “
Bone Fracture Analysis on the Short Rod Chevron-Notch Specimens Using the X-ray Computer Micro-Tomography
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
11
(
10
), pp.
629
636
.
36.
Martin
,
R. B.
, and
Burr
,
D. B.
, 1989,
Structure, Function, and Adaptation of Compact Bone
.
Raven Press
,
New York
, Chap. 2.
37.
Behiri
,
J. C.
, and
Bonfield
,
W.
, 1989, “
Orientation Dependence of the Fracture Mechanics of Cortical Bone
,”
J. Biomech.
0021-9290,
22
(
8–9
), pp.
863
872
.
38.
Malik
,
C. L.
,
Stover
,
S. M.
,
Martin
,
R. B.
, and
Gibeling
,
J. C.
, 2003, “
Equine Cortical Bone Exhibits Rising R-Curve Fracture Mechanics
,”
J. Biomech.
0021-9290,
36
(
2
), pp.
191
198
.
39.
Vashishth
,
D.
, 2004, “
Rising Crack-Growth-Resistance Behavior in Cortical Bone: Implications for Toughness Measurements
,”
J. Biomech.
0021-9290,
37
(
6
), pp.
943
946
.
40.
Salem
,
J. A.
,
Shannon
,
J. L.
, and
Jenkins
,
M. G.
, 1992, “
Some Observations in Fracture Toughness and Fatigue Testing With Chevron-Notched Specimens
,”
Chevron-Notch Fracture Test Experience: Metals and Non-Metals
,
K. R.
Brown
and
F. I.
Baratta
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
9
25
.
41.
Zehnder
,
A. T.
,
Hui
,
C.
, and
Rodeghiero
,
E. D.
, 1997, “
Chevron-Notched Toughness of Materials with Rising Fracture Resistance Curves
,”
J. Am. Ceram. Soc.
0002-7820,
80
(
5
), pp.
1319
1322
.
42.
Bowie
,
O. L.
, 1956, “
Analysis of an Infinite Plate Containing Radial Cracks Originating from the Boundary of an Internal Circular Hole
,”
J. Math. Phys.
0022-2488,
35
(
1
), pp.
60
71
.
43.
Grandt
,
A. F.
, 1975, “
Stress Intensity Factors for Some Through-Cracked Fastener Holes
,”
Int. J. Fract.
0376-9429,
11
(
2
), pp.
283
294
.
44.
Randall
,
P. N.
, 1966, “
Severity of Natural Flaws as Fracture Origins, and a Study of the Surface-Cracked Specimen
,” AFML-TR-66-204.
You do not currently have access to this content.