The time-dependent mechanical properties of the porcine esophagus were investigated experimentally and theoretically. It was hypothesized that the viscoelasticity was quasilinear, i.e., the time and strain effects were independent. In order to verify the separability of time and strain effects, the stress-relaxation test was conducted at various strains and the data were fitted with the Fung’s quasilinear viscoelastic (QLV) model. By using the material parameters obtained from the stress relaxation test, the cyclic peak stress and hysteresis were predicted. Results showed that the stress relaxed by 20–30% of the peak stress within the first 10s and stabilized at 50% at the time of 300s. The relative stress relaxation R2 (i.e., the difference of stress at a particular time to the final equilibrium stress normalized by the total difference of the peak and final stress) was not different significantly for various strains. It was also found that, by using the stress-time data during both the ramp and relaxation phases, the correlation between parameters was substantially reduced. The model could also predict the cyclic peak stress and hysteresis except for the underestimate of valley stress. We conclude that the QLV model could be used as the material characterization of the esophageal tissue.

1.
Yamada
,
H. M. D.
, 1970,
Strength of Biological Materials
,
Wavely
, MD.
2.
Lu
,
X.
, and
Gregersen
,
H.
, 2001, “
Regional Distribution of Axial Strain and Circumferential Residual Strain in the Layered Rabbit Oesophagus
,”
J. Biomech.
0021-9290,
34
, pp.
225
233
.
3.
Egorov
,
V. I.
,
Schastlivtsev
,
I. V.
,
Prut
,
E. V.
,
Baranov
,
A. O.
, and
Turusov
,
R. A.
, 2002, “
Mechanical Properties of the Human Gastrointestinal Tract
,”
J. Biomech.
0021-9290,
35
, pp.
1417
1425
.
4.
Liao
,
D.
,
Fan
,
Y.
,
Zeng
,
Y.
, and
Gregersen
,
H.
, 2003, “
Stress Distribution in the Layered Wall of the Rat Oesophagus
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
731
738
.
5.
Vanags
,
I.
,
Petersons
,
A.
,
Ose
,
V.
,
Ozolanta
,
I.
,
Kasyanov
,
V.
,
Laizans
,
J.
,
Vjaters
,
E.
,
Gardovskis
,
J.
, and
Vanags
,
A.
, 2003, “
Biomechanical Properties of Esophagus Wall under Loading
,”
J. Biomech.
0021-9290,
36
, pp.
1237
1408
.
6.
Rao
,
S. S.
,
Hayek
,
B.
, and
Summers
,
R. W.
, 1995, “
Impedance Planimetry: An Integrated Approach for Assessing Sensory, Active, and Passive Biomechanical Properties of the Human Esophagus
,”
Am. J. Gastroenterol.
0002-9270,
90
, pp.
431
438
.
7.
Goyal
,
R. K.
,
Biancani
,
P.
,
Phillips
,
A.
, and
Spiro
,
H. M.
, 1971, “
Mechanical Properties of the Esophageal Wall
,”
J. Clin. Invest.
0021-9738,
50
, pp.
1456
1465
.
8.
Sarver
,
J. J.
,
Robinson
,
P. S.
, and
Elliott
,
D. M.
, 2003, “
Methods for Quasi-Linear Viscoelastic Modeling of Soft Tissue: Application to Incremental Stress-Relaxation Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
754
758
.
9.
Ledoux
,
W. R.
,
Meaney
,
D. F.
, and
Hillstrom
,
H. J.
, 2004, “
A Quasi-Linear, Viscoelastic Structural Model of the Plantar Soft Tissue with Frequency-Sensitive Damping Properties
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
831
837
.
10.
Gimbel
,
J. A.
,
Sarver
,
J. J.
, and
Soslowsky
,
L. J.
, 2004, “
The Effect of Overshooting the Target Strain on Estimating Viscoelastic Properties From Stress Relaxation Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
844
848
.
11.
Doehring
,
T. C.
,
Carew
,
E. O. L.
, and
Wesely
,
I.
, 2004, “
The Effect of Strain Rate on the Viscoelastic Response of Aortic Valve Tissue: A Direct-Fit Approach
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
223
232
.
12.
Abramowitch
,
S. D.
, and
Woo
,
S. L. Y.
, 2004, “
An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
92
97
.
13.
Pioletti
,
D. P.
, and
Rakotomanana
,
L. R.
, 2000, “
On the Independence of Time and Strain Effects in the Stress Relaxation of Ligaments and Tendons
,”
J. Biomech.
0021-9290,
33
, pp.
1729
1723
.
14.
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Corr
,
D. T.
, and
Vanderby
,
R.
, Jr.
, 2002, “
Application of Nonlinear Viscoelastic Models to Describe Ligament Behavior
,”
Biomechanical Model and Mechanobiology
,
1
, pp.
45
47
.
15.
Hingorani
,
R. V.
,
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Escarcega
,
A.
, and
Vanderby
,
R.
Jr.
, 2004, “
Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
306
312
.
16.
Lakes
,
R. S.
, and
Vanderby
,
R.
, 1999, “
Interrelation of Creep and Relaxation: a Modeling Approach for Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
612
615
.
17.
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Keenan
,
T.
, and
Vanderby
,
R.
Jr.
, 2001, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
908
914
.
18.
Yang
,
W.
,
Fung
,
T. C.
,
Chian
,
K. S.
,
Chong
,
C. K.
, 2006, “
Directional, Regional, and Layer Variations of Mechanical Properties of Esophageal Tissue and its Interpretation Using a Structure-Based Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
409
418
.
19.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
, New York.
20.
Puso
,
M. A.
, and
Weiss
,
J. A.
, 1998, “
Finite Element Implementation of Anisotropic Quasilinear Viscoelasticity using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
62
70
.
21.
Yin
,
F. C. P.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
, 1986, “
An Approach to Quantification of Biaxial Tissue Stress-Strain Data
,”
J. Biomech.
0021-9290,
19
, pp.
27
37
.
22.
Anderson
,
J.
,
Li
,
Z.
, and
Goubel
,
F.
, 2002, “
Models of Skeletal Muscle to Explain the Increase in Passive Stiffness in Desmin Knockout Muscle
,”
J. Biomech.
0021-9290,
35
, pp.
1315
1324
.
23.
Athanasiou
,
A. K.
, and
Allen
,
K. D.
, 2006, “
Viscoelastic Characterization of the Porcine Temporomandibular Joint Disc Under Unconfined Compression
,”
J. Biomech.
0021-9290 (in press).
24.
Donahue
,
T. L. H.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2001, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made From Bovine Digital Extensor and Human Hamstring Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
162
169
.
25.
Downs
,
J. C.
,
Suh
,
J. K. F.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Burgoyne
,
C. F.
,
Hart
,
R. T.
, 2003, “
Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey Eyes
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
124
131
.
26.
Thomopoulos
,
S.
,
Williams
,
G. R.
, and
Soslowsky
,
L. J.
, 2003, “
Tendon to Bone Healing: Differences in Biomechanical, Structural, and Compositional Properties Due to a Range of Activity Levels
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
106
113
.
27.
Toms
,
S. R.
,
Dakin
,
G. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
, 2002, “
Quasi-linear Viscoelastic Behavior of the Human Periodontal Ligament
,”
J. Biomech.
0021-9290,
35
, pp.
1411
1415
.
28.
Li
,
L. P.
,
Herzog
,
W.
,
Korhonen
,
R. K.
, and
Jurvelin
,
J. S.
, 2005, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Axial Tension Versus Compression
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
535
543
.
29.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
78
84
.
30.
Sanjeevi
,
R.
,
Somanathan
,
N.
, and
Ramaswamy
,
D.
, 1982, “
A Viscoelastic Model for Collagen Fibers
,”
J. Biomech.
0021-9290,
15
, pp.
161
183
.
31.
Haut
,
R. C.
, and
Little
,
R. W.
, 1972, “
A Constitutive Equation for Collagen Fibers
,”
J. Biomech.
0021-9290,
5
, pp.
423
430
.
32.
Gregersen
,
H.
, 2003,
Biomechanics of the Gastrointestinal Tract: New Perspectives in Motility Research and Diagnostics
,
Springer-Verlag
, London.
33.
Pal
,
A.
, and
Brasseur
,
J. G.
, 2002, “
The Mechanical Advantage of Local Longitudinal Shortening on Peristaltic Transport
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
94
100
.
34.
Cohen
,
S.
, and
Green
,
F.
, 1973, “
The Mechanics of Esophageal Muscle Contraction: Evidence of an Inotropic Effect of Gastrin
,”
J. Clin. Invest.
0021-9738,
52
, pp.
2029
2040
.
You do not currently have access to this content.