This study uses a reconstructed vascular geometry to evaluate the thermal response of tissue during a three-dimensional radiofrequency (rf) tumor ablation. MRI images of a sectioned liver tissue containing arterial vessels are processed and converted into a finite-element mesh. A rf heat source in the form of a spherically symmetric Gaussian distribution, fit from a previously computed profile, is employed. Convective cooling within large blood vessels is treated using direct physical modeling of the heat and momentum transfer within the vessel. Calculations of temperature rise and thermal dose are performed for transient rf procedures in cases where the tumor is located at three different locations near the bifurcation point of a reconstructed artery. Results demonstrate a significant dependence of tissue temperature profile on the reconstructed vasculature and the tumor location. Heat convection through the arteries reduced the steady-state temperature rise, relative to the no-flow case, by up to 70% in the targeted volume. Blood flow also reduced the thermal dose value, which quantifies the extent of cell damage, from 3600min, for the no-flow condition, to 10min for basal flow (13.8cms). Reduction of thermal dose below the threshold value of 240min indicates ablation procedures that may inadequately elevate the temperature in some regions, thereby permitting possible tumor recursion. These variations are caused by vasculature tortuosity that are patient specific and can be captured only by the reconstruction of the realistic geometry.

1.
Pearson
,
A. S.
,
Izzo
,
F.
,
Fleming
,
R. Y.
,
Ellis
,
L. M.
,
Delrio
,
P.
, and
Roh
,
M. S.
, 1999, “
Intraoperative RF Ablation or Cryoablation for Hepatic Malignancies
,”
Am. J. Surg.
0002-9610,
178
, pp.
592
629
.
2.
Wood
,
B. J.
,
Ramkaransingh
,
J. R.
,
Fojo
,
T.
,
Walther
,
M. M.
, and
Libutti
,
S. K.
, 2002, “
Percutaneous Tumor Ablation with Radio Frequency
,”
Cancer
0008-543X,
94
, pp.
443
451
.
3.
Chang
,
I.
, and
Beard
,
B.
, 2002, “
Precision Test Method for Evaluating the Heating Pattern of Radiofrequency Ablation Devices
,”
Med. Eng. Phys.
1350-4533,
24
, pp.
633
640
.
4.
Baldwin
,
S.
,
Pelman
,
A.
, and
Bert
,
J. L.
, 2001, “
A Heat Transfer Model of Thermal Balloon Endometrial Ablation
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
1009
1018
.
5.
Tungjitkusolmun
,
S.
,
Staelin
,
S. T.
,
Haemmerich
,
D.
,
Tsai
,
J.-Z.
,
Cao
,
H.
,
Webster
,
J. G.
,
Lee
,
F. T.
,
Vorperian
,
V.
, and
Mahvi
,
M.
, 2002, “
Three Dimensional Finite-Element Analyses for Radio-Frequency Hepatic Tumor Ablation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
49
, pp.
3
9
.
6.
Haemmerich
,
D.
,
Staelin
,
S. T.
,
Tungjitkusolmun
,
S.
,
Lee
,
F. T.
,
Mahvi
,
M.
, and
Webster
,
J. G.
, 2001, “
Hepatic Bipolar Radio-Frequency Ablation Between Separated Multiprong Electrodes
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
(
10
), pp.
1145
1152
.
7.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
8.
Arkin
,
H.
,
Xu
,
L. X.
, and
Holmes
,
K. R.
, 1994, “
Recent Developments in Modeling Heat Transfer in Blood Perfused Tissues
,”
IEEE Trans. Biomed. Eng.
0018-9294,
41
(
2
), pp.
97
107
.
9.
Wulff
,
W.
, 1974, “
The Energy Conservation Equation for Liver Tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-21
, pp.
494
495
.
10.
Weinbaum
,
S.
,
Xu
,
L. X.
,
Zhu
,
L.
, and
Ekpene
,
A.
, 1997, “
A New Fundamental Bioheat Equation for Muscle Tissue: Part I—Blood Perfusion Term
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
278
288
.
11.
Roemer
,
R. B.
, and
Dutton
,
A. W.
, 1998, “
A Generic Tissue Convective Energy Balance Equation: Part I—Theory and Derivation
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
395
404
.
12.
Kolios
,
M. C.
,
Sherar
,
M. D.
, and
Hunt
,
J. W.
, 1995, “
Large Blood Vessel Cooling in Heated Tissues: A Numerical Study
,”
Phys. Med. Biol.
0031-9155,
40
, pp.
477
494
.
13.
Van Leeuwen
,
G. M.
, and
Kotte
,
A. N.
, 2000, “
Temperature Simulations in Tissue With a Realistic Computer Generated Vessel Network
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
1035
1049
.
14.
Chen
,
M. M.
, and
Holmes
,
K. K.
, 1980, “
Microvascular Contributions to Tissue Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
335
, pp.
137
150
.
15.
Pandey
,
A. K.
,
Chang
,
I.
,
Myers
,
M.
, and
Banerjee
,
R. K.
, 2003, “
Radio-Frequency Ablation with a Gaussian Heat Source in a Realistic Reconstructed Hepatic Geometry
,” Proceedings of ASME Int. Mech. Engrg. Cong. & Expo., Paper No. IMECE-41481, Washington, DC, November 16–20.
16.
Materialise Inc.
, 2001, Mimics User Manual, Version 7.1, Ann Arbor, MI.
17.
Fluent Inc.
, 2002, Gambit User Manual, Version 2.0.4, Lebanon, NH.
18.
Chang
,
I.
, 2003, “
Finite-Element Analysis of Hepatic Radiofrequency Ablation Probes Using Temperature-Dependent Electrical Conductivity
,”
Biomed. Eng. (NY)
0006-3398, www.biomedical-engineering-online.com/content/2/1/12www.biomedical-engineering-online.com/content/2/1/12
19.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
, 1995, “
Convergence Properties of the Nelder-Mead Algorithm in Low Dimensions
,”
AT&T Bell Laboratories
, Murray Hill, NJ, Technical Report.
20.
Mathworks Inc.
, 2002, Matlab Manual, Version 6.5, Natick, MA.
21.
Duck
,
F.
, 1990, “
Physical Properties of Tissue
,”
Academic
, New York, pp.
167
223
.
22.
Bourne
,
D. W. A.
, 2001, “
A First Course in Pharmacokinetics and Biopharmaceutics
,” www.boomer.org/c/p1/index.htmlwww.boomer.org/c/p1/index.html.
23.
Materne
,
R.
,
Van Beers
,
B. E.
,
Smith
,
A. M.
,
Leconte
,
I.
,
Jamart
,
J.
,
Dehoux
,
J-P.
,
Keyeux
,
A.
, and
Horsmans
,
Y.
, 2000, “
Non-Invasive Quantification of Liver Perfusion With Dynamic Computed Tomography and a Dual-Input One-Compartmental Model
,”
Clin. Sci.
0323-5084,
99
, pp.
517
525
.
24.
Fluent Inc.
, 2002, Fidap User Manual, Version 8.6.2, Lebanon, NH.
25.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1990, “
Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
81
, pp.
199
259
.
26.
Banerjee
,
R. K.
,
Sung
,
C.
,
Bungay
,
P. M.
,
Dedrick
,
R. L.
, and
Osdol
,
W. W. V.
, 2002, “
Antibody Penetration into a Spherical Prevascular Tumor Nodule Embeded in Normal Tissue
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
828
839
.
27.
Sarntinoranont
,
M.
,
Banerjee
,
R. K.
,
Lonser
,
R. R.
, and
Morrison
,
P. F.
, 2003, “
A Computational Model of Direct Interstitial Infusion of Macromolecules into the Spinal Cord
,”
Ann. Biomed. Eng.
0090-6964, submitted.
28.
Wood
,
J. D.
,
Lonser
,
R. R.
,
Gogate
,
N.
,
Morrison
,
P. F.
, and
Oldfield
,
E. H.
, 1999, “
Convective Delivery of Macromolecules into the Naïve and Traumatized Spinal Cords of Rats
,”
J. Neurosurg.
0022-3085,
90
, pp.
115
120
.
29.
Saperto
,
S.
, and
Dewey
,
W. C.
, 1984, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
10
, pp.
787
800
.
30.
Pandey
,
A. K.
,
Chang
,
I.
,
Myers
,
M.
, and
Banerjee
,
R. K.
, 2002, “
Finite Element Analysis of Radio-Frequency Ablation in a Reconstructed Realistic Hepatic Geometry
,” Proceedings ASME Int. Mech. Engrg. Cong. & Expo., Paper No. IMECE-32046, Louisiana, November 17-22.
31.
Cooney
,
D. O.
, 1980, “
Advances in Biomedical Engineering, Part I
,”
Marcel Dekker
, New York.
32.
Silebi
,
C. A.
, and
Schiesser
,
W. E.
, 1997,
Computational Transport Phenomena: Numerical Methods for the Solution of Transport Problems
,
Cambridge University Press
, Cambridge, UK.
33.
Baere
,
T. D.
,
Denys
,
A.
,
Wood
,
B. J.
,
Lassau
,
N.
,
Kardache
,
M.
,
Vilgrain
,
V.
,
Menu
,
Y.
, and
Roche
,
A.
, 2001, “
RF Liver Ablation: Experimental Comparative Study of Water-Cooled Versus Expandable Systems
,”
AJR, Am. J. Roentgenol.
0361-803X,
176
, pp.
187
192
.
You do not currently have access to this content.