The atomic force microscope (AFM) has found wide applicability as a nanoindentation tool to measure local elastic properties of soft materials. An automated approach to the processing of AFM indentation data, namely, the extraction of Young’s modulus, is essential to realizing the high-throughput potential of the instrument as an elasticity probe for typical soft materials that exhibit inhomogeneity at microscopic scales. This paper focuses on Hertzian analysis techniques, which are applicable to linear elastic indentation. We compiled a series of synergistic strategies into an algorithm that overcomes many of the complications that have previously impeded efforts to automate the fitting of contact mechanics models to indentation data. AFM raster data sets containing up to 1024 individual force-displacement curves and macroscopic compression data were obtained from testing polyvinyl alcohol gels of known composition. Local elastic properties of tissue-engineered cartilage were also measured by the AFM. All AFM data sets were processed using customized software based on the algorithm, and the extracted values of Young’s modulus were compared to those obtained by macroscopic testing. Accuracy of the technique was verified by the good agreement between values of Young’s modulus obtained by AFM and by direct compression of the synthetic gels. Validation of robustness was achieved by successfully fitting the vastly different types of force curves generated from the indentation of tissue-engineered cartilage. For AFM indentation data that are amenable to Hertzian analysis, the method presented here minimizes subjectivity in preprocessing and allows for improved consistency and minimized user intervention. Automated, large-scale analysis of indentation data holds tremendous potential in bioengineering applications, such as high-resolution elasticity mapping of natural and artificial tissues.

1.
El Kirat
,
K.
,
Burton
,
I.
,
Dupres
,
V.
, and
Dufrene
,
Y. F.
, 2005, “
Sample Preparation Procedures for Biological Atomic Force Microscopy
,”
J. Microsc.
0022-2720,
218
(Pt 3), pp.
199
207
.
2.
Fotiadis
,
D.
,
Scheuring
,
S.
,
Muller
,
S. A.
,
Engel
,
A.
, and
Muller
,
D. J.
, 2002, “
Imaging and Manipulation of Biological Structures With the AFM
,”
Micron
0968-4328,
33
(
4
), pp.
385
397
.
3.
Greulich
,
K. O.
, 2005, “
Single-Molecule Studies on DNA and RNA
,”
ChemPhysChem
1439-4235,
6
(
12
), pp.
2458
2471
.
4.
Kienberger
,
F.
,
Ebner
,
A.
,
Gruber
,
H. J.
, and
Hinterdorfer
,
P.
, 2006, “
Molecular Recognition Imaging and Force Spectroscopy of Single Biomolecules
,”
Acc. Chem. Res.
0001-4842,
39
(
1
), pp.
29
36
.
5.
Radmacher
,
M.
, 1997, “
Measuring the Elastic Properties of Biological Samples With the AFM
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
16
(
2
), pp.
47
57
.
6.
Silva
,
L. P.
, 2005, “
Imaging Proteins With Atomic Force Microscopy: An Overview
,”
Curr. Protein Peptide Sci.
,
6
, pp.
387
395
.
7.
Simon
,
A.
, and
Durrieu
,
M.
, 2006, “
Strategies and Results of Atomic Force Microscopy in the Study of Cellular Adhesion
,”
Micron
0968-4328,
37
, pp.
1
13
.
8.
Schaer-Zammaretti
,
P.
, and
Ubbink
,
J.
, 2003, “
Imaging of Lactic Acid Bacteria With AFM—Elasticity and Adhesion Maps and Their Relationship to Biological and Structural Data
,”
Ultramicroscopy
0304-3991,
97
(
1–4
), pp.
199
208
.
9.
Almqvist
,
N.
,
Bhatia
,
R.
,
Primbs
,
G.
,
Desai
,
N.
,
Banerjee
,
S.
, and
Lal
,
R.
, 2004, “
Elasticity and Adhesion Force Mapping Reveals Real-Time Clustering of Growth Factor Receptors and Associated Changes in Local Cellular Rheological Properties
,”
Biophys. J.
0006-3495,
86
(
3
), pp.
1753
1762
.
10.
Hutter
,
J. L.
,
Chen
,
J.
,
Wan
,
W. K.
,
Uniyal
,
S.
,
Leabu
,
M.
, and
Chan
,
B. M.
, 2005, “
Atomic Force Microscopy Investigation of the Dependence of Cellular Elastic Moduli on Glutaraldehyde Fixation
,”
J. Microsc.
0022-2720,
219
(Pt 2), pp.
61
68
.
11.
Radmacher
,
M.
, 2002, “
Measuring the Elastic Properties of Living Cells by the Atomic Force Microscope
,”
Methods Cell Biol.
0091-679X,
68
, pp.
67
90
.
12.
Jaasma
,
M. J.
,
Jackson
,
W. M.
, and
Keaveny
,
T. M.
, 2006, “
Measurement and Characterization of Whole-Cell Mechanical Behavior
,”
Ann. Biomed. Eng.
0090-6964,
34
(
5
), pp.
748
758
.
13.
Mathur
,
A. B.
,
Collinsworth
,
A. M.
,
Reichert
,
W. M.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
, 2001, “
Endothelial, Cardiac Muscle and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy
,”
J. Biomech.
0021-9290,
34
(
12
), pp.
1545
1553
.
14.
Radhakrishnan
,
P.
,
Lewis
,
N. T.
, and
Mao
,
J. J.
, 2004, “
Zone-Specific Micromechanical Properties of the Extracellular Matrices of Growth Plate Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
32
(
2
), pp.
284
291
.
15.
Stolz
,
M.
,
Raiteri
,
R.
,
Daniels
,
A. U.
,
VanLandingham
,
M. R.
,
Baschong
,
W.
, and
Aebi
,
U.
, 2004, “
Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
86
(
5
), pp.
3269
3283
.
16.
Tomkoria
,
S.
,
Patel
,
R. V.
, and
Mao
,
J. J.
, 2004, “
Heterogeneous Nanomechanical Properties of Superficial and Zonal Regions of Articular Cartilage of the Rabbit Proximal Radius Condyle by Atomic Force Microscopy
,”
Med. Eng. Phys.
1350-4533,
26
(
10
), pp.
815
822
.
17.
Tao
,
N. J.
,
Lindsay
,
S. M.
, and
Lees
,
S.
, 1992, “
Measuring the Microelastic Properties of Biological Material
,”
Biophys. J.
0006-3495,
63
, pp.
1165
1169
.
18.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
, 2002, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
0006-3495,
82
(
5
), pp.
2798
2810
.
19.
Kolambkar
,
Y. M.
, 2004, “
Extracting Mechanical Properties of Cells∕Biomaterials Using the Atomic Force Microscope
,” Master’s thesis, University of Cincinnati, Cincinnati, http://www.ohiolink.eduhttp://www.ohiolink.edu
20.
Nyland
,
L. R.
, and
Maughan
,
D. W.
, 2000, “
Morphology and Transverse Stiffness of Drosophila Myofibrils Measured by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
78
(
3
), pp.
1490
1497
.
21.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
0021-9797,
53
, pp.
314
326
.
22.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
, pp.
301
313
.
23.
Muller
,
V. M.
,
Yushchenko
,
V. S.
, and
Derjaguin
,
B. V.
, 1980, “
On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigid Plane
,”
J. Colloid Interface Sci.
0021-9797,
77
(
1
), pp.
91
101
.
24.
Butt
,
H.
,
Capella
,
B.
, and
Kappl
,
M.
, 2005, “
Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications
,”
Surf. Sci. Rep.
0167-5729,
59
, pp.
1
152
.
25.
Costa
,
K. D.
, and
Yin
,
F. C. P.
, 1999, “
Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
462
471
.
26.
Bilodeau
,
G.
, 1992, “
Regular Pyramid Punch Problem
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
519
523
.
27.
Na
,
S.
,
Sun
,
Z.
,
Meininger
,
G. A.
, and
Humphrey
,
J. D.
, 2004, “
On Atomic Force Microscopy and the Constitutive Behavior of Living Cells
,”
Biomech. Model. Mechanobiol.
,
3
(
2
), pp.
75
84
.
28.
Rico
,
F.
,
Roca-Cusachs
,
P.
,
Gavara
,
N.
,
Farre
,
R.
,
Rotger
,
M.
, and
Navajas
,
D.
, 2005, “
Probing Mechanical Properties of Living Cells by Atomic Force Microscopy With Blunted Pyramidal Cantilever Tips
,”
Phys. Rev. E
1063-651X,
72
(2 Pt 1), pp.
021914
.
29.
Lin
,
D. C.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
, 2007, “
Robust Strategies for Automated AFM Force Curve Analysis—II. Adhesion-Influenced Indentation of Soft, Elastic Materials
,”
ASME J. Biomech. Eng.
0148-0731, accepted for publication.
30.
Domke
,
J.
, and
Radmacher
,
M.
, 1998, “
Measuring the Elastic Properties of Thin Polymer Films With the Atomic Force Microscope
,”
Langmuir
0743-7463,
14
, pp.
3320
3325
.
31.
A-Hassan
,
E.
,
Heinz
,
W. F.
,
Antonik
,
M. D.
,
D’Costa
,
N. P.
,
Nageswaran
,
S.
,
Schoenenberger
,
C.
, and
Hoh
,
J. H.
, 1998, “
Relative Microelastic Mapping of Living Cells by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
74
, pp.
1564
1578
.
32.
Sun
,
Y.
,
Akhremitchev
,
B.
, and
Walker
,
G. C.
, 2004, “
Using the Adhesive Interaction between Atomic Force Microscopy Tips and Polymer Surfaces to Measure the Elastic Modulus of Compliant Samples
,”
Langmuir
0743-7463,
20
, pp.
5837
5845
.
33.
Touhami
,
A.
,
Nysten
,
B.
, and
Dufrene
,
Y. F.
, 2003, “
Nanoscale Mapping of the Elasticity of Microbial Cells by Atomic Force Microscopy
,”
Langmuir
0743-7463,
19
, pp.
4539
4543
.
34.
Horkay
,
F.
, and
Nagy
,
M.
, 1980, “
Elasticity of Swollen Polyvinyl Alcohol and Poly(Vinyl Acetate) Networks
,”
Polym. Bull. (Berlin)
0170-0839,
3
(
8–9
), pp.
457
463
.
35.
Aklonis
,
J. J.
, and
MacKnight
,
W. J.
, 1983,
Introduction to Polymer Viscoelasticity
,
Wiley
,
New York
.
36.
Treloar
,
L. R. G.
, 1975,
The Physics of Rubber Elasticity
,
Oxford University Press
,
London
.
37.
Horkay
,
F.
,
Horkayne-Szakaly
,
I.
, and
Basser
,
P. J.
, 2005, “
Measurement of the Osmotic Properties of Thin Polymer Films and Biological Tissue Samples
,”
Biomacromolecules
1525-7797,
6
(
2
), pp.
988
993
.
38.
Burnham
,
N. A.
,
Chen
,
X.
,
Hodges
,
C. S.
,
Matei
,
G. A.
,
Thoreson
,
E. J.
,
Roberts
,
C. J.
,
Davies
,
M. C.
, and
Tendler
,
S. J. B.
, 2003, “
Comparison of Calibration Methods for Atomic-Force Microscopy Cantilevers
,”
Nanotechnology
0957-4484,
14
, pp.
1
6
.
39.
Hutter
,
J. L.
, and
Bechhoefer
,
J.
, 1993, “
Calibration of Atomic-Force Microscope Tips
,”
Rev. Sci. Instrum.
0034-6748,
64
(
7
), pp.
1868
1873
.
40.
Urayama
,
K.
,
Takigawa
,
T.
, and
Masuda
,
T.
, 1993, “
Poisson’s Ratio of Poly(Vinyl Alcohol) Gels
,”
Macromolecules
0024-9297,
26
(
12
), pp.
3092
3096
.
41.
Geissler
,
E.
, and
Hecht
,
A. M.
, 1980, “
The Poisson Ratio in Polymer Gels
,”
Macromolecules
0024-9297,
13
, pp.
1276
1280
.
42.
Mow
,
V. C.
,
Lai
,
W. M.
, and
Holmes
,
M. H.
, 1982, “
Advanced Theoretical and Experimental Techniques in Cartilage Research
,”
Biomechanics: Principles and Applications
,
Huiskes
,
R.
,
Van Campen
,
D.
, and
Dewijn
,
J.
, eds.,
Martinus Nijhoff
,
The Hague
, pp.
47
74
.
43.
Nie
,
H. Y.
,
Motomatsu
,
M.
,
Mizutani
,
W.
, and
Tokumoto
,
H.
, 1996, “
Local Elasticity Measurement on Polymers Using Atomic Force Microscopy
,”
Thin Solid Films
0040-6090,
273
, pp.
143
148
.
44.
Alcaraz
,
J.
,
Buscemi
,
L.
,
Grabulosa
,
M.
,
Trepat
,
X.
,
Fabry
,
B.
,
Farre
,
R.
, and
Navajas
,
D.
, 2003, “
Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
84
(
3
), pp.
2071
2079
.
45.
Jiao
,
Y.
, and
Schaffer
,
T. E.
, 2004, “
Accurate Height and Volume Measurements on Soft Samples With the Atomic Force Microscope
,”
Langmuir
0743-7463,
20
, pp.
10038
10045
.
46.
Rotsch
,
C.
,
Jacobson
,
K.
, and
Radmacher
,
M.
, 1999, “
Dimensional and Mechanical Dynamics of Active and Stable Edges in Motile Fibroblasts Investigated by Using Atomic Force Microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
3
), pp.
921
926
.
47.
Kopycinska-Muller
,
M.
,
Geiss
,
R. H.
, and
Hurley
,
D. C.
, 2006, “
Contact Mechanics and Tip Shape in AFM-Based Nanomechanical Measurements
,”
Ultramicroscopy
0304-3991,
106
(
6
), pp.
466
474
.
48.
Cumpson
,
P. J.
,
Hedley
,
J.
,
Clifford
,
C. A.
,
Chen
,
X.
, and
Allen
,
S.
, 2004, “
Microelectromechanical System Device for Calibration of Atomic Force Microscope Cantilever Spring Constants Between 0.01 and 4N∕M
,”
J. Vac. Sci. Technol. A
0734-2101,
22
(
4
), pp.
1444
1449
.
49.
Torii
,
A.
,
Sasaki
,
M.
,
Hane
,
K.
, and
Okuma
,
S.
, 1996, “
A Method for Determining the Spring Constant of Cantilevers for Atomic Force Microscopy
,”
Meas. Sci. Technol.
0957-0233,
7
(
2
), pp.
179
184
.
50.
Jarausch
,
K. F.
,
Stark
,
T. J.
, and
Russell
,
P. E.
, 1996, “
Silicon Structures for in Situ Characterization of Atomic Force Microscope Probe Geometry
,”
J. Vac. Sci. Technol. B
0734-211X,
14
(
6
), pp.
3425
3430
.
51.
Li
,
Y.
, and
Lindsay
,
S. M.
, 1991, “
Polystyrene Latex Particles as a Size Calibration for the Atomic Force Microscope
,”
Rev. Sci. Instrum.
0034-6748,
62
(
11
), pp.
2630
2633
.
52.
Markiewicz
,
P.
, and
Goh
,
M. C.
, 1995, “
Atomic Force Microscope Tip Deconvolution Using Calibration Arrays
,”
Rev. Sci. Instrum.
0034-6748,
66
(
5
), pp.
3186
3190
.
53.
Vesenka
,
J.
,
Manne
,
S.
,
Giberson
,
R.
,
Marsh
,
T.
, and
Henderson
,
E.
, 1993, “
Colloidal Gold Particles as an Incompressible Atomic Force Microscope Imaging Standard for Assessing the Compressibility of Biomolecules
,”
Biophys. J.
0006-3495,
65
(
3
), pp.
992
997
.
You do not currently have access to this content.