Abstract

Electromyographic (EMG) activity is associated with several tasks prior to landing in walking and running including positioning the leg, developing joint stiffness and possibly control of soft tissue compartment vibrations. The concept of muscle tuning suggests one reason for changes in muscle activity pattern in response to small changes in impact conditions, if the frequency content of the impact is close to the natural frequency of the soft tissue compartments, is to minimize the magnitude of soft tissue compartment vibrations. The mechanical properties of the soft tissue compartments depend in part on muscle activations and thus it was hypothesized that changes in the muscle activation pattern associated with different impact conditions would result in a change in the acceleration transmissibility to the soft tissue compartments. A pendulum apparatus was used to systematically administer impacts to the heel of shod male participants. Wall reaction forces, EMG of selected leg muscles, soft tissue compartment and shoe heel cup accelerations were quantified for two different impact conditions. The transmissibility of the impact acceleration to the soft tissue compartments was determined for each subject/soft tissue compartment/shoe combination. For this controlled impact situation it was shown that changes in the damping properties of the soft tissue compartments were related to changes in the EMG intensity and/or mean frequency of related muscles in response to a change in the impact interface conditions. These results provide support for the muscle tuning idea—that one reason for the changes in muscle activity in response to small changes in the impact conditions may be to minimize vibrations of the soft tissue compartments that are initiated at heel-strike.

References

1.
Nigg
,
B. M.
, 1997, “
Impact Forces in Running
,”
Curr. Opin. Orthop.
,
8
, pp.
43
47
.
2.
Nigg
,
B. M.
, and
Wakeling
,
J. M.
, 2001, “
Impact Forces and Muscle Tuning: A New Paradigm
,”
Exercise Sport Sci. Rev.
0091-6331,
29
(
1
), pp.
37
41
.
3.
Wakeling
,
J. M.
, and
Nigg
,
B. M.
, 2001, “
Modification of Soft Tissue Vibrations in the Leg by Muscular Activity
,”
J. Appl. Physiol.
8750-7587,
90
(
2
), pp.
412
420
.
4.
Wakeling
,
J. M.
,
Nigg
,
B. M.
, and
Rozitis
,
A. I.
, 2002, “
Muscle Activity Damps the Soft Tissue Resonance that Occurs in Response to Pulsed and Continuous Vibrations
,”
J. Appl. Physiol.
8750-7587,
93
(
3
), pp.
1093
1103
.
5.
Wakeling
,
J. M.
,
Pascual
,
S. A.
, and
Nigg
,
B. M.
, 2002, “
Altering Muscle Activity in the Lower Extremities by Running With Different Shoes
,”
Med. Sci. Sports Exercise
0195-9131,
34
(
9
), pp.
1529
1532
.
6.
Wakeling
,
J. M.
,
Liphardt
,
A. M.
, and
Nigg
,
B. M.
, 2003, “
Muscle Activity Reduces Soft-Tissue Resonance at Heel-Strike During Walking
,”
J. Biomech.
0021-9290,
36
(
12
), pp.
1761
1769
.
7.
Boyer
,
K. A.
, and
Nigg
B. M.
, 2004, “
Muscle Activity in the Leg is Tuned in Response to Impact Force Characteristics
,”
J. Biomech.
0021-9290,
37
(
10
), pp.
1583
1588
.
8.
Boyer
,
K. A.
, and
Nigg
,
B. M.
, 2006, “
Muscle Tuning During Running: Implications of an Un-tuned Landing
,”
J. Biomech. Eng.
0148-0731,
128
, pp.
815
822
.
9.
Wakeling
,
J. M.
,
von Tscharner
,
V
,
Nigg
,
B. M.
, and
Stergiou
,
P.
, 2001, “
Muscle Activity in the Leg is Tuned in Response to Ground Reaction Forces
,”
J. Appl. Physiol.
8750-7587,
91
(
3
), pp.
1307
1317
.
10.
Wakeling
,
J. M.
, and
Liphardt
,
A. M.
, 2006, “
Task-Specific Recruitment of Motor Units for Vibration Damping
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1342
1346
.
11.
Lafortune
,
M. A.
, and
Lake
,
M. J.
, 1995, “
Human Pendulum Approach to Simulate and Quantify Locomotor Impact Loading
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1111
1114
.
12.
von Tscharner
,
V.
, 2000, “
Intensity Analysis in Time-Frequency Space of Surface Myoelectric Signals by Wavelets of Specified Resolution
,”
J. Electromyogr. Kinesiol
1050-6411,
10
(
6
), pp.
433
445
.
13.
Kitazaki
,
S.
, and
Griffin
,
M. J.
, 1995, “
A Data Correction Method for Surface Measurement of Vibration on the Human Body
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
885
890
.
14.
von Gierke
,
H. E.
, 1971, “
Biodynamic Models and Their Applications
,”
J. Acoust. Soc. Am.
0001-4966,
50
(
6
), pp.
1397
1413
.
15.
von Gierke
,
H. E.
, and
Brammer
,
A. J.
, 1995, “
Effects of Shock, and Vibration on Human
,”
Shock and Vibration Handbook
, 4th ed.,
C. M.
Harris
,
McGraw-Hill
, New York, NY, pp.
44.1
44.67
.
16.
Liu
,
W.
, and
Nigg
,
B. M.
, 2000, “
A Mechanical Model to Determine the Influence of Masses and Mass Distribution on the Impact Force During Running
,”
J. Biomech.
0021-9290,
33
(
2
), pp.
219
224
.
17.
Gruber
,
K.
, 1987,
The Wobbling Mass Model
,
Human Kinetics Publishers
, Champaign, IL, pp.
1095
1105
.
18.
Nigg
,
B. M.
,
Bahlsen
,
H. A.
,
Luethi
,
S. M.
, and
Stokes
,
S.
, 1987, “
The Influence of Running Velocity and Midsole Hardness on External Impact Forces in Heel-Toe Running
,”
J. Biomech.
0021-9290,
20
(
10
), pp.
951
959
.
19.
Nigg
,
B. M.
,
Herzog
,
W.
, and
Read
,
L. J.
, 1988, “
Effect of Viscoelastic Shoe Insoles on Vertical Impact Forces in Heel-Toe Running
,”
Am. J. Sports Med.
0363-5465,
16
(
1
), pp.
70
76
.
20.
De Wit
,
B.
,
De Clercq
,
D.
, and
Lenoir
,
M.
, 1995, “
The Effect of Varying Midsole Hardness on Impact Forces and Foot Motion during Foot Contact in Running
,”
Journal of Applied Biomechanics
,
11
(
4
), pp.
394
406
.
21.
Hennig
,
E. M.
,
Valiant
,
G. A.
, and
Liu
,
Q.
, 1996, “
Biomechanical Variables and the Perception of Cushioning for Running in Various Types of Footwear
,”
Journal of Applied Biomechanics
,
12
, pp.
143
150
.
22.
Milani
,
T. L.
,
Hennig
,
E. M.
, and
Lafortune
,
M. A.
, 1997, “
Perceptual and Biomechanical Variables for Running in Identical Shoe Constructions With Varying Midsole Hardness
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
5
), pp.
294
300
.
23.
Dixon
,
S. J.
,
Collop
,
A. C.
, and
Batt
,
M. E.
, 2000, “
Surface Effects on Ground Reaction Forces and Lower Extremity Kinematics in Running
,”
Med. Sci. Sports Exercise
0195-9131,
32
(
11
), pp.
1919
1926
.
24.
Ettema
,
G. J.
, and
Huijing
,
P. A.
, 1994, “
Frequency Response to Rat Gastrocnemius Medialis in Small Amplitude Vibrations
,”
J. Biomech.
0021-9290,
27
(
8
), pp.
1015
1022
.
25.
Wilson
,
A. M.
,
McGuigan
,
M. P.
,
Su
,
A.
, and
van Den Bogert
,
A. J.
, 2001, “
Horses Damp the Spring in Their Step
Nature (London)
0028-0836,
414
(
6866
), pp.
895
899
.
26.
Moritani
,
T.
,
Muro
,
M.
,
Kijima
,
A.
,
Gaffney
,
F. A.
, and
Parsons
,
D.
, 1985, “
Electromechanical Changes During Electrically Induced and Maximal Voluntary Contractions: Surface and Intramuscular EMG Responses During Sustained Maximal Voluntary Contraction
,”
Exp. Neurol.
0014-4886,
88
(
3
), pp.
484
499
.
27.
Kupa
,
E. J.
,
Roy
,
S. H.
,
Kandarian
,
S. C.
, and
De Luca
,
C. J.
, 1995, “
Effects of Muscle Fiber Type and Size on EMG Median Frequency and Conduction Velocity
,”
J. Appl. Physiol.
8750-7587,
79
(
1
), pp.
23
32
.
28.
Gerdle
,
B.
,
Karlsson
,
S.
,
Crenshaw
,
A. G.
,
Elert
,
J.
, and
Friden
,
J.
, 2000, “
The Influences of Muscle Fibre Proportions and Areas Upon EMG during Maximal Dynamic Knee Extensions
,”
Eur. J. Appl. Physiol.
0301-5548,
81
(
1–2
), pp.
2
10
.
29.
Wakeling
,
J. M.
, and
Syme
,
D. A.
2002, “
Wave Properties of Action Potentials From Fast and Slow Motor Units of Rats
,”
Muscle Nerve
0148-639X,
26
(
5
), pp.
659
668
.
30.
Wakeling
,
J. M.
,
Kaya
,
M.
,
Temple
,
G. K.
,
Johnston
,
I. A.
, and
Herzog
,
W.
, 2002, “
Determining Patterns of Motor Recruitment During Locomotion
,”
J. Exp. Biol.
0022-0949,
205
(
3
), pp.
359
369
.
31.
von Tscharner
,
V.
,
Goepfert
,
B.
, and
Nigg
,
B. M.
, 2003, “
Changes in EMG Signals for the Muscle Tibialis Anterior While Running Barefoot or With Shoes Resolved by Non-linearly Scaled Wavelets
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1169
1176
.
32.
Wakeling
,
J. M.
, and
Liphardt
,
A. M.
, 2005, “
Task-Specific Recruitment of Motor Units for Vibration Damping
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1342
1346
.
33.
Mundermann
,
A.
,
Wakeling
,
J. M.
,
Nigg
,
B. M.
,
Humble
,
R. N.
, and
Stefanyshyn
,
D. J.
, 2005, “
Foot Orthoses Affect Frequency Components of Muscle Activity in the Lower Extremity
,”
Gait and Posture
0966-6362,
23
(
3
), pp.
295
302
.
34.
Harris
,
C. S.
, and
Shoenberger
,
R. W.
, 1966, “
Effects of Frequency of Vibration on Human Performance
,”
J. Eng. Psychol.
,
5
(
1
), pp.
1
15
.
35.
Burstrom
,
L.
, and
Bylund
,
S. H.
, 2000, “
Relationship Between Vibration Dose and the Absorption of Mechanical Power in the Hand
,”
Scand. J. Work Environ. Health
0355-3140,
26
(
1
), pp.
32
36
.
36.
Cardinale
,
M.
,
Wakeling
,
J.
, and
Viru
,
A.
, 2005, “
Whole Body Vibration Exercise: Are Vibrations Good for You? Commentary
,”
Br. J. Sports Med.
0306-3674,
39
(
9
), pp.
585
589
.
37.
Mester
,
J.
,
Kleinoder
,
H.
, and
Yue
,
Z.
, 2005, “
Vibration Training: Benefits and Risks
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1056
1065
.
38.
Nigg
,
B. M.
, and
Liu
,
W.
, 1999, “
The Effect of Muscle Stiffness and Damping on Simulated Impact Force Peaks During Running
,”
J. Biomech.
0021-9290,
32
(
8
), pp.
849
856
.
39.
Horita
,
T.
,
Komi
,
P. V.
,
Nicol
,
C.
, and
Kyrolainen
,
H.
, 2002, “
Interaction Between Pre-landing Activities and Stiffness Regulation of the Knee Joint Musculoskeletal System in the Drop Jump: Implications to Performance
,”
Eur. J. Appl. Physiol.
0301-5548,
88
(
1–2
), pp.
76
84
.
40.
Moritz
,
C. T.
,
Greene
,
S. M.
, and
Farley
,
C. T.
, 2004, “
Neuromuscular Changes for Hopping on a Range of Damped Surfaces
,”
J. Appl. Physiol.
8750-7587,
96
(
5
), pp.
1996
2004
.
41.
Santello
,
M.
, 2005, “
Review of Motor Control Mechanisms Underlying Impact Absorption from Falls
,”
Gait and Posture
0966-6362,
21
(
1
), pp.
85
94
.
42.
Nigg
,
B. M.
,
Denoth
,
J.
, and
Neukomm
,
P. A.
, 1981, “
Quantifying the Load on the Human Body: Problems and Some Possible Solutions
,”
Biomechanics
,
University Park Press
,
Baltimore
,
A.
Morecki
,
K.
Fidelus
,
K.
Kedzior
, and
A.
Wit
, eds., Vol.
VII
, pp.
88
99
.
43.
Denoth
,
J.
, 1986, “
Load on the Locomotor System and Modeling
,”
Biomechanics of Running Shoes
,
B. M.
Nigg
, ed.,
Human Kinetics Publishers
,
Champaign, Illinois
, pp.
63
116
.
44.
Ferris
,
D. P.
,
Louie
,
M.
, and
Farley
,
C. T.
, 1998 “
Running in the Real World: Adjusting Leg Stiffness for Different Surfaces
,”
Proc. R. Soc. London, Ser. B
0962-8452,
265
(
1400
), pp.
989
994
.
45.
Ferris
,
D. P.
,
Liang
,
K.
, and
Farley
,
C. T.
, 1999, “
Runners Adjust Leg Stiffness for Their First Step on a New Running Surface
,”
J. Biomech.
0021-9290,
32
(
8
), pp.
787
794
.
46.
Kerdok
,
A. E.
,
Biewener
,
A. A.
,
McMahon
,
T. A.
,
Weyand
,
P. G.
, and
Herr
,
H. M.
, 2002, “
Energetics and Mechanics of Human Running on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol.
8750-7587,
92
(
2
), pp.
469
478
.
47.
Frederick
,
E. C.
, 1986, “
Kinematically Mediated Effects of Sport Shoe Design: A Review
,”
J. Sports Sci.
0264-0414,
4
(
3
), pp.
169
184
.
48.
Hardin
,
E. C.
,
van den Bogert
,
A. J.
, and
Hamill
,
J.
, 2004, “
Kinematic Adaptations During Running: Effects of Footwear, Surface, and Duration
,”
Med. Sci. Sports Exercise
0195-9131,
36
(
5
), pp.
838
844
.
49.
Jefferson
,
R. J.
,
Collins
,
J. J.
,
Whittle
,
M. W.
,
Radin
,
E. L.
, and
O’Connor
,
J. J.
, 1990, “
The Role of the Quadriceps in Controlling Impulsive Forces Around Heel Strike
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
204
(
1
), pp.
21
28
.
50.
Patla
,
A. E.
, and
Prentice
,
S. D.
, 1995, “
The Role of Active Forces and Intersegmental Dynamics in the Control of Limb Trajectory Over Obstacles During Locomotion in Humans
,”
Exp. Brain Res.
0014-4819,
106
(
3
), pp.
499
504
.
51.
Eng
,
J. J.
,
Winter
,
D. A.
, and
Patla
,
A. E.
, 1997, “
Intralimb Dynamics Simplify Reactive Control Strategies During Locomotion
,”
J. Biomech.
0021-9290,
30
(
6
), pp.
581
588
.
52.
McMahon
,
T. A.
, 1985, “
The Role of Compliance in Mammalian Running Gaits
,”
J. Exp. Biol.
0022-0949,
115
, pp.
263
282
.
53.
Farley
,
C. T.
, and
Ferris
,
D. P.
, 1998, “
Biomechanics of Walking and Running: Center of Mass Movements to Muscle Action
,”
Exerc Sport Sci. Rev.
0091-6331,
26
, pp.
253
285
.
You do not currently have access to this content.