Mechanical forces are known to affect the biomechanical properties of native and engineered cardiovascular tissue. In particular, shear stress that results from the relative motion of heart valve leaflets with respect to the blood flow is one important component of their mechanical environment in vivo. Although different types of bioreactors have been designed to subject cells to shear stress, devices to expose biological tissue are few. In an effort to address this issue, the aim of this study was to design an ex vivo tissue culture system to characterize the biological response of heart valve leaflets subjected to a well-defined steady or time-varying shear stress environment. The novel apparatus was designed based on a cone-and-plate viscometer. The device characteristics were defined to limit the secondary flow effects inherent to this particular geometry. The determination of the operating conditions producing the desired shear stress profile was streamlined using a computational fluid dynamic (CFD) model validated with laser Doppler velocimetry. The novel ex vivo tissue culture system was validated in terms of its capability to reproduce a desired cone rotation and to maintain sterile conditions. The CFD results demonstrated that a cone angle of 0.5deg, a cone radius of 40mm, and a gap of 0.2mm between the cone apex and the plate could limit radial secondary flow effects. The novel cone-and-plate permits to expose nine tissue specimens to an identical shear stress waveform. The whole setup is capable of accommodating four cone-and-plate systems, thus concomitantly subjecting 36 tissue samples to desired shear stress condition. The innovative design enables the tissue specimens to be flush mounted in the plate in order to limit flow perturbations caused by the tissue thickness. The device is capable of producing shear stress rates of up to 650dyncm2s1 (i.e., maximum shear stress rate experienced by the ventricular surface of an aortic valve leaflet) and was shown to maintain tissue under sterile conditions for 120h. The novel ex vivo tissue culture system constitutes a valuable tool toward elucidating heart valve mechanobiology. Ultimately, this knowledge will permit the production of functional tissue engineered heart valves, and a better understanding of heart valve biology and disease progression.

1.
Balachandran
,
K.
,
Konduri
,
S.
,
Sucosky
,
P.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
, 2006, “
An Ex Vivo Study of the Biological Properties of Porcine Aortic Valves in Response to Circumferential Cyclic Stretch
,”
Ann. Biomed. Eng.
0090-6964,
34
(
11
), pp.
1655
1665
.
2.
Butcher
,
J. T.
,
Sorescu
,
G.
,
Jo
,
H.
, and
Nerem
,
R.
, 2005, “
Unique Morphological and Genetic Responses of Valvular Endothelial Cells to Steady Laminar Shear Stress
,”
Proceedings of the Third Biennial Meeting of The Society for Heart Valve Disease
, June 17–20, Vancouver, Canada.
3.
Butcher
,
J. T.
, and
Nerem
,
R. M.
, 2006, “
Valvular Endothelial Cells Regulate the Phenotype of Interstitial Cells in Co-Culture: Effects of Steady Shear Stress
,”
Tissue Eng.
1076-3279,
12
(
4
), pp.
905
915
.
4.
Engelmayr
,
G. C.
, Jr.
,
Rabkin
,
E.
,
Sutherland
,
F. W. H.
,
Schoen
,
F. J.
,
Mayer
, Jr.,
J. E.
, and
Sacks
,
M. S.
, 2005, “
The Independent Role of Cyclic Flexure in the Early in Vitro Development of an Engineering Heart Valve Tissue
,”
Biomaterials
0142-9612,
26
(
2
), pp.
175
187
.
5.
Xing
,
Y.
,
Warnock
,
J. N.
,
He
,
Z.
,
Hilbert
,
S. L.
, and
Yoganathan
,
A. P.
, 2004, “
Cyclic Pressure Affects the Biological Properties of Porcine Aortic Valve Leaflets in a Magnitude- and Frequency-Dependent Manner
,”
Ann. Biomed. Eng.
0090-6964,
32
(
11
), pp.
1461
1470
.
6.
Ikhumetse
,
J.
,
Konduri
,
S.
,
Warnock
,
J. N.
,
Xing
,
Y.
, and
Yoganathan
,
A. P.
, 2006, “
Cyclic Aortic Pressure Affects the Biological Properties of Porcine Pulmonary Valve Leaflets
,”
J. Heart Valve Dis.
0966-8519,
15
(
2
), pp.
295
302
.
7.
Platt
,
M. O.
,
Xing
,
Y.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
, 2006, “
Cyclic Pressure and Shear Stress Regulate Matrix Metalloproteinases and Cathepsin Activity in Porcine Aortic Valves
,”
J. Heart Valve Dis.
0966-8519,
15
(
5
), pp.
622
629
.
8.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Casey Jones
,
S.
, 2004, “
Fluid Mechanics of Heart Valves
,”
World Futures
0260-4027,
6
, pp.
331
362
.
9.
Weston
,
M. W.
,
LaBorde
,
D. V.
, and
Yoganathan
,
A. P.
, 1999, “
Estimation of the Shear Stress on the Surface of an Aortic Valve Leaflet
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
572
579
.
10.
Thubrikar
,
M.
, 1990,
The Aortic Valve
,
CRC
,
Boca Raton, FL
.
11.
Nugent
,
H. M.
, and
Edelman
,
E. R.
, 2003, “
Tissue Engineering Therapy for Cardiovascular Disease
,”
Circ. Res.
0009-7330,
92
(
10
), pp.
1068
1078
.
12.
Hoerstrup
,
S.
,
Sodian
,
R.
,
Daebtriz
,
S.
,
Wang
,
J.
,
Bacha
,
E.
,
Martin
,
D.
,
Moran
,
A.
,
Guleserian
,
K.
,
Sperling
,
J.
,
Kaushal
,
S.
,
Vacanti
,
J.
,
Schoen
,
F.
, and
Mayer
,
J.
, 2000, “
Functional Living Trileaflet Heart Valves Grown in Vitro
,”
Circulation
0009-7322,
102
, pp.
11144
11149
.
13.
Engelmayr
,
G. C.
, Jr.
,
Hildebrand
,
D. K.
,
Sutherland
,
F. W.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
, 2003, “
A Novel Bioreactor for the Dynamics Flexural Stimulation of Tissue Engineered Heart Valve Biomaterials
,”
Biomaterials
0142-9612,
24
, pp.
2523
2532
.
14.
Warnock
,
J. N.
,
Konduri
,
S.
,
He
,
Z.
, and
Yoganathan
,
A. P.
, 2005, “
Design of a Sterile Organ Culture System for the Ex Vivo Study of Aortic Heart Valves
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
857
861
.
15.
Hildebrand
,
D. K.
,
Wu
,
Z. J.
,
Mayer
, Jr.,
J. E.
, and
Sacks
,
M. S.
, 2004, “
Design and Hydrodynamic Evaluation of a Novel Pulsatile Bioreactor for Biologically Active Heart Valves
,”
Ann. Biomed. Eng.
0090-6964,
32
(
8
), pp.
1039
1049
.
16.
Frangos
,
J. A.
,
Eskin
,
S. G.
,
McIntire
,
L. V.
, and
Ives
,
C. L.
, 1985, “
Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells
,”
Science
0036-8075,
227
(
4693
), pp.
1477
1479
.
17.
Chappell
,
D. C.
,
Varner
,
S. E.
,
Nerem
,
R. M.
,
Medford
,
R. M.
, and
Alexander
,
R. W.
, 1998, “
Oscillatory Shear Stress Stimulates Adhesion Molecule Expression in Cultured Human Endothelium
,”
Circ. Res.
0009-7330,
82
(
5
), pp.
532
539
.
18.
Chiu
,
J. J.
,
Chen
,
C. N.
,
Lee
,
P. L.
,
Yang
,
C. T.
,
Chuang
,
H. S.
,
Chien
,
S.
, and
Usami
,
S.
, 2003, “
Analysis of the Effect of Disturbed Flow on Monocytic Adhesion to Endothelial Cells
,”
J. Biomech.
0021-9290,
36
(
12
), pp.
1883
1895
.
19.
Chiu
,
J. J.
,
Chen
,
L. J.
,
Lee
,
P. L.
,
Lee
,
C. I.
,
Lo
,
L. W.
,
Usami
,
S.
, and
Chien
,
S.
, 2003, “
Shear Stress Inhibits Adhesion Molecule Expression in Vascular Endothelial Cells Induced by Coculture with Smooth Muscle Cells
,”
Blood
0006-4971,
101
(
7
), pp.
2667
2674
.
20.
DePaola
,
N.
,
Davies
,
P. F.
,
Pritchard
,
W. F.
, Jr.
,
Florez
,
L.
,
Harbeck
,
N.
, and
Polacek
,
D. C.
, 1999, “
Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows in Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
6
), pp.
3154
3159
.
21.
Hsiai
,
T. K.
,
Cho
,
S. K.
,
Reddy
,
S.
,
Hama
,
S.
,
Navab
,
M.
,
Demer
,
L. L.
,
Honda
,
H. M.
, and
Ho
,
C. M.
, 2001, “
Pulsatile Flow Regulates Monocyte Adhesion to Oxidized Lipid-Induced Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
21
(
11
), pp.
1770
1776
.
22.
Mooney
,
M.
, and
Ewart
,
R. H.
, 1934, “
The Conicylindrical Viscometer
,”
Physics (N.Y.)
0092-8437,
5
, pp.
350
354
.
23.
Dai
,
G.
,
Natarajan
,
S.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Blackman
,
B. R.
,
Kamm
,
R. D.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
, 2004, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived from Atherosclerosis-Susceptible and -Resistant Regions of Human Vasculature
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, pp.
14871
14876
.
24.
Dewey
, Jr.,
C. F.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
, 1981, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
3
), pp.
177
185
.
25.
Go
,
Y. M.
,
Patel
,
R. P.
,
Maland
,
M. C.
,
Park
,
H.
,
Beckman
,
J. S.
,
Darley-Usmar
,
V. M.
, and
Jo
,
H.
, 1999, “
Evidence for Peroxynitrite as a Signaling Molecule in Flow-Dependent Activation of C-Jun NH(2)-Terminal Kinase
,”
Am. J. Physiol.
0002-9513,
277
(
42
), pp.
H1647
1653
.
26.
Jo
,
H.
,
Song
,
H.
, and
Mowbray
,
A.
, 2006, “
Role of NADPH Oxidases in Disturbed Flow- and BMP4-Induced Inflammation and Atherosclerosis
,”
Antioxidants and Redox Signaling
,
8
(
9–10
), pp.
1609
1619
.
27.
Fewell
,
M. E.
, and
Hellums
,
J. D.
, 1977, “
The Secondary Flow of Newtonian Fluids in Cone-And-Plate Viscometers
,”
Trans. Soc. Rheol.
0038-0032,
21
(
4
), pp.
535
565
.
28.
Pelech
,
I.
, and
Shapiro
,
A. H.
, 1964, “
Flexible Disk Rotating on a Gas Film Next to a Wall
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
577
584
.
29.
Sdougos
,
H. P.
,
Bussolari
,
S. R.
, and
Dewey
,
C. F.
, 1984, “
Secondary Flow and Turbulence in a Cone-And-Plate Device
,”
J. Fluid Mech.
0022-1120,
138
, pp.
379
404
.
30.
Buschmann
,
M. H.
,
Dieterich
,
P.
,
Adams
,
N. A.
, and
Schnittler
,
H.-J.
, 2004, “
Analysis of Flow in Cone-And-Plate Apparatus with Respect to Spatial and Temporal Effects on Endothelial Cells
,”
Biosens. Bioelectron.
0956-5663,
89
(
5
), pp.
493
502
.
31.
Chung
,
C. A.
,
Tzou
,
M. R.
, and
Ho
,
R. W.
, 2005, “
Oscillatory Flow in a Cone-And-Plate Bioreactor
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
601
610
.
32.
Bussolari
,
S. R.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1982, “
Apparatus for Subjecting Living Cells to Fluid Shear Stress
,”
Rev. Sci. Instrum.
0034-6748,
53
(
12
), pp.
1851
1854
.
33.
Blackman
,
B. R.
,
Barbee
,
K. A.
, and
Thibault
,
L. E.
, 2000, “
In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
363
372
.
34.
Blackman
,
B. R.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
, 2002, “
A New in Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
397
407
.
35.
Sorescu
,
G. P.
,
Sykes
,
M.
,
Weiss
,
D.
,
Platt
,
M. O.
,
Saha
,
A.
,
Hwang
,
J.
,
Boyd
,
N.
,
Boo
,
Y. C.
,
Vega
,
J. D.
,
Taylor
,
W. R.
, and
Jo
,
H.
, 2003, “
Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response
,”
J. Biol. Chem.
0021-9258,
278
(
33
), pp.
31128
31135
.
You do not currently have access to this content.