The clinical assessment of abdominal aortic aneurysm (AAA) rupture risk is based on the quantification of AAA size by measuring its maximum diameter from computed tomography (CT) images and estimating the expansion rate of the aneurysm sac over time. Recent findings have shown that geometrical shape and size, as well as local wall thickness may be related to this risk; thus, reliable noninvasive image-based methods to evaluate AAA geometry have a potential to become valuable clinical tools. Utilizing existing CT data, the three-dimensional geometry of nine unruptured human AAAs was reconstructed and characterized quantitatively. We propose and evaluate a series of 1D size, 2D shape, 3D size, 3D shape, and second-order curvature-based indices to quantify AAA geometry, as well as the geometry of a size-matched idealized fusiform aneurysm and a patient-specific normal abdominal aorta used as controls. The wall thickness estimation algorithm, validated in our previous work, is tested against discrete point measurements taken from a cadaver tissue model, yielding an average relative difference in AAA wall thickness of 7.8%. It is unlikely that any one of the proposed geometrical indices alone would be a reliable index of rupture risk or a threshold for elective repair. Rather, the complete geometry and a positive correlation of a set of indices should be considered to assess the potential for rupture. With this quantitative parameter assessment, future research can be directed toward statistical analyses correlating the numerical values of these parameters with the risk of aneurysm rupture or intervention (surgical or endovascular). While this work does not provide direct insight into the possible clinical use of the geometric parameters, we believe it provides the foundation necessary for future efforts in that direction.

1.
Patel
,
M. I.
,
Hardman
,
D. T. A.
,
Fisher
,
C. M.
, and
Appleberg
,
M.
, 1995, “
Current Views on the Pathogenesis of Abdominal Aortic Aneurysms
,”
J. Am. Coll. Surg.
1072-7515,
181
, pp.
371
382
.
2.
Brown
,
L. C.
, and
Powell
,
J. T.
,
The UK Small Aneurysm Trial Participants
, 1999, “
Risk Factors for Aneurysm Rupture in Patients kept Under Ultrasound Surveillance
,”
Ann. Surg.
0003-4932,
230
, pp.
289
297
.
3.
Limet
,
R.
,
Sakalihasan
,
N.
, and
Albert
,
A.
, 1991, “
Determination of the Expansion Rate and the Incidence of Rupture of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
14
, pp.
540
548
.
4.
Lederle
,
F. A.
,
Johnson
,
G. R.
, and
Wilson
,
S. E.
, 1997, “
Prevalence and Associations of Abdominal Aortic Aneurysms Detected Through Screening
,”
Ann. Intern. Med.
,
126
, pp.
441
449
. 0003-4819
5.
The UK Small Aneurysm Trial Participants
, 1998, “
Mortality Results for Randomized Controlled Trial of Early Elective Surgery or Ultrasonographic Surveillance for Small Abdominal Aortic Aneurysms
,”
Lancet
0140-6736,
352
, pp.
1649
1655
.
6.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M.
, 1998, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
0741-5214,
27
, pp.
632
639
.
7.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
0741-5214,
37
, pp.
724
732
.
8.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
, 2004, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Surg.
0950-821X,
28
, pp.
168
176
.
9.
Vande Geest
,
J. P.
,
Wang
,
D. H.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
1908
1916
.
10.
Dobrin
,
P.
,
Baker
,
W.
, and
Gley
,
W.
, 1984, “
Elastolytic and Collagenolytic Studies of Arteries
,”
Arch. Surg. (Chicago)
0004-0010,
119
, pp.
405
409
.
11.
Wang
,
D.
,
Makaroun
,
M.
,
Webster
,
M.
, and
Vorp
,
D. A.
, 2002, “
Effect of Intraluminal Thrombus on Wall Stress in Patient Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
36
, pp.
598
604
.
12.
Da Silva
,
E. S.
,
Rodrigues
,
A.
, and
De Tolosa
,
E. C.
, 2000, “
Morphology and Diameter of Infrarenal Aortic Aneurysms: A Prospective Autopsy Study
,”
Cardiovasc. Surg.
0967-2109,
8
, pp.
526
532
.
13.
Smith
,
A. D. C.
, 1999, “
The Folding of the Human Brain: From Shape to Function
,” Ph.D. thesis, University of London, London, UK.
14.
Ma
,
B.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
, 2004, “
Three-Dimensional Geometrical Characterization of Cerebral Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
264
273
.
15.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Harbaugh
,
R. E.
, 2005, “
Quantified Aneurysm Shape and Rupture Risk
,”
J. Neurosurg.
0022-3085,
102
, pp.
355
362
.
16.
Pappu
,
S.
,
Dardik
,
A.
,
Tagare
,
H.
, and
Gusberg
,
R. J.
, 2008, “
Beyond Fusiform and Saccular: A Novel Quantitative Tortuosity Index May Help Classify Aneurysm Shape and Predict Aneurysm Rupture Potential
,”
Ann. Vasc. Surg.
0890-5096,
22
, pp.
88
97
.
17.
Fillinger
,
M.
,
Racusin
,
J.
, and
Baker
,
R.
, 2004, “
Anatomic Characteristics of Ruptured Abdominal Aortic Aneurysm on Conventional CT Scans: Implications for Rupture Risk
,”
J. Vasc. Surg.
0741-5214,
39
, pp.
1243
1252
.
18.
Finol
,
E. A.
,
Keyhani
,
K.
, and
Amon
,
C. H.
, 2003, “
The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
207
217
.
19.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S.
,
Cronenwett
,
J.
, and
Kennedy
,
F. E.
, 2002, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
0741-5214,
36
, pp.
589
597
.
20.
Nyilas
,
R. D.
,
Ng
,
S. M. L.
,
Leung
,
J.
, and
Xu
,
X. Y.
, 2005, “
Towards a New Geometric Approach to Assess the Risk of Rupture of Abdominal Aortic Aneurysms Using Patient Specific Modeling
,”
Proceedings of the 2005 Summer Bioengineering Conference
, Vail, CO, Jun. 22–26.
21.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M.
, and
Vorp
,
D. A.
, 2006, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
0741-5214,
43
, pp.
570
576
.
22.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
Simao da Silva
,
E.
, 2006, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
39
, pp.
3010
3016
.
23.
Mower
,
W.
,
Baraff
,
L.
, and
Sneyd
,
J.
, 1993, “
Stress Distribution in Vascular Aneurysms: Factors Affecting Risk of Aneurysm Rupture
,”
J. Surg. Res.
0022-4804,
55
, pp.
155
161
.
24.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2005, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online
1475-925X,
4
(
64
.
25.
Scotti
,
C. M.
,
Jimenez
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2008, “
Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis Vs. Fluid-Structure Interaction
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
11
(
3
), pp.
301
322
.
26.
Shkolnik
,
A. D.
,
Scotti
,
C. M.
,
Amon
,
C. H.
, and
Finol
,
E. A.
, 2005, “
Computational Modeling of Abdominal Aortic Aneurysms: An Assessment of Rupture Potential for Presurgical Planning
,”
Biomechanics Applied to Computer Assisted Surgery
,
Y.
Payan
, ed.,
Research Signpost
,
Kerala, India
, pp.
243
260
.
27.
Di Martino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
, 2001, “
Fluid-Structure Interaction Within Realistic Three Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
647
655
.
28.
Sacks
,
M. S.
,
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Federle
,
M. P.
, and
Webster
,
M. W.
, 1999, “
In Vivo Three-Dimensional Surface Geometry of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
469
479
.
29.
Shum
,
J.
,
DiMartino
,
E. S.
,
Goldhammer
,
A.
,
Goldman
,
D.
,
Acker
,
L.
,
Patel
,
G.
,
Martufi
,
G.
, and
Finol
,
E. A.
, “
Semi-Automatic Vessel Wall Detection and Quantification of Wall Thickness in CT Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
0094-2405, submitted.
30.
Finol
,
E. A.
, and
Amon
,
C. H.
, 2002, “
Flow-Induced Wall Shear Stress in Abdominal Aortic Aneurysms: Part I-Steady Flow Hemodynamics
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
(
4
), pp.
309
318
.
31.
Hamann
,
B.
, 1993, “
Curvature Approximation for Triangulated Surfaces
,”
Geometric Modeling
,
G.
Farin
,
H.
Hagen
, and
H.
Noltemeier
, eds.,
Springer-Verlag
,
New York
, pp.
139
153
.
32.
Jinnai
,
H.
,
Watashiba
,
H.
,
Kajihara
,
T.
,
Nishikawa
,
Y.
,
Takahashi
,
M.
, and
Ito
,
M.
, 2002, “
Surface Curvatures of Trabecular Bone Microarchitecture
,”
Bone
,
30
, pp.
191
194
. 8756-3282
33.
Cappeller
,
W. A.
,
Engelmann
,
H.
,
Blechschmidt
,
S.
,
Wild
,
M.
, and
Lauterjung
,
L.
, 1997, “
Possible Objectification of a Critical Maximum Diameter for Elective Surgery in Abdominal Aortic Aneurysms Based on One- and Three-Dimensional Ratios
,”
J. Cardiovasc. Surg. (Torino)
,
38
, pp.
623
628
. 0021-9509
34.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
, 2003, “
Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
804
809
.
35.
Vorp
,
D. A.
,
Lee
,
P. C.
,
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Nemoto
,
E. M.
,
Ogawa
,
S.
, and
Webster
,
M. W.
, 2001, “
Association of Intraluminal Thrombus in Abdominal Aortic Aneurysm With Local Hypoxia and Wall Weakening
,”
J. Vasc. Surg.
0741-5214,
34
, pp.
291
299
.
36.
Pillari
,
G. P.
, 2000, “
Crescent Sign Origin and the Thrombus-to-Lumen Ratio in Abdominal Aortic Aneurysm
,”
Radiology
0033-8419,
214
, p.
604
.
You do not currently have access to this content.