Proteins aggregate and precipitate from high concentration solutions in a wide variety of problems of natural and technological interest. Consequently, there is a broad interest in developing new ways to model the thermodynamic and kinetic aspects of protein stability in these crowded cellular or solution environments. We use a coarse-grained modeling approach to study the effects of different crowding agents on the conformational equilibria of proteins and the thermodynamic phase behavior of their solutions. At low to moderate protein concentrations, we find that crowding species can either stabilize or destabilize the native state, depending on the strength of their attractive interaction with the proteins. At high protein concentrations, crowders tend to stabilize the native state due to excluded volume effects, irrespective of the strength of the crowder-protein attraction. Crowding agents reduce the tendency of protein solutions to undergo a liquid-liquid phase separation driven by strong protein-protein attractions. The aforementioned equilibrium trends represent, to our knowledge, the first simulation predictions for how the properties of crowding species impact the global thermodynamic stability of proteins and their solutions.

1.
Benedek
,
G. B.
,
Pande
,
J.
,
Thurston
,
G. M.
, and
Clark
,
J. I.
, 1999, “
Theoretical and Experimental Basis for the Inhibition of Cataract
,”
Prog. Retin Eye Res.
1350-9462,
18
, pp.
391
402
.
2.
Harper
,
J.
, and
Lansbury
,
P. T.
, 1997, “
Models of Amyloid Seeding in Alzheimer's Disease and Scrapie: Mechanistic Truths and Physiological Consequences of the Time-Dependent Solubility of Amyloid Proteins
,”
Annu. Rev. Biochem.
0066-4154,
66
, pp.
385
407
.
3.
Fink
,
A. L.
, 1998, “
Protein Aggregation: Folding Aggregates, Inclusion Bodies, and Amyloids
,”
Fold. Des.
,
3
, pp.
R9
R23
. 1359-0278
4.
Dobson
,
C. M.
, 2001, “
The Structural Basis of Protein Folding and Its Links with Human Disease
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
356
, pp.
133
145
.
5.
Eisenberg
,
D.
,
Nelson
,
R.
,
Sawaya
,
M. R.
,
Balbirnie
,
M.
,
Sambashivan
,
S.
,
Ivanova
,
M. I.
,
Madsen
,
A. O.
, and
Riekel
,
C.
, 2006, “
The Structural Biology of Protein Aggregation Diseases: Fundamental Questions and Some Answers
,”
Acc. Chem. Res.
0001-4842,
39
, pp.
568
575
.
6.
DeYoung
,
L. R.
,
Dill
,
K. A.
, and
Fink
,
A. L.
, 1993, “
Aggregation and Denaturation of Apomyoglobin in Aqueous Urea Solutions
,”
Biochemistry
0006-2960,
32
, pp.
3877
3886
.
7.
Wetzel
,
R.
, 1994, “
Mutations and Off-Pathway Aggregation of Proteins
,”
Trends Biotechnol.
0167-7799,
12
, pp.
193
198
.
8.
Kendrick
,
B. S.
,
Carpenter
,
J. F.
,
Cleland
,
J. L.
, and
Randolph
,
T. W.
, 1998, “
A Transient Expansion of the Native State Precedes Aggregation of Recombinant Human Interferon-γ
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
, pp.
14142
14146
.
9.
Goldberg
,
M. E.
,
Rudolph
,
R.
, and
Jaenicke
,
R.
, 1991, “
A Kinetic Study of the Competition Between Renaturation and Aggregation During the Refolding of Denatured-Reduced Egg White Lysozyme
,”
Biochemistry
0006-2960,
30
, pp.
2790
2797
.
10.
Safar
,
J.
,
Roller
,
P. P.
,
Gajdusek
,
D. C.
, and
Gibbs
,
C. J.
, 1994, “
Scrapie Amyloid (Prion) Protein has the Conformational Characteristics of an Aggregated Molten Folding Intermediate
,”
Biochemistry
0006-2960,
33
, pp.
8375
8383
.
11.
Chi
,
E. Y.
,
Krishnan
,
S.
,
Randolph
,
T.
, and
Carpenter
,
J.
, 2003, “
Physical Stability of Proteins in Aqueous Solutions: Mechanism and Driving Forces in Nonnative Protein Aggregation
,”
Pharm. Res.
0724-8741,
20
, pp.
1325
1336
.
12.
Roberts
,
C. J.
, 2003, “
Kinetics of Irreversible Protein Aggregation: Analysis of Extended Lumry–Eyring Models and Implications for Predicting Protein Shelf Life
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
1194
1207
.
13.
Fawzi
,
N. L.
,
Chubukov
,
V.
,
Clark
,
L. A.
,
Brown
,
S.
, and
Head-Gordon
,
T.
, 2005, “
Influence of Denatured and Intermediate States of Folding on Protein Aggregation
,”
Protein Sci.
0961-8368,
14
, pp.
993
1003
.
14.
Roberts
,
C. J.
,
Darrington
,
R. T.
, and
Whitley
,
M. B.
, 2003, “
Irreversible Aggregation of Recombinant Bovine Granulocyte-Colony Simulating Factor (bg-csf) and Implications for Predicting Protein Shelf Life
,”
J. Pharm. Sci.
0022-3549,
92
, pp.
1095
1111
.
15.
Weiss
,
W. F.
, IV
,
Hodgdon
,
T. K.
,
Kaler
,
E. W.
,
Lenhoff
,
A. M.
, and
Roberts
,
C. J.
, 2007, “
Nonnative Protein Polymers: Structure, Morphology, and Relation to Nucleation and Growth
,”
Biophys. J.
0006-3495,
93
, pp.
4392
4403
.
16.
Andrews
,
J. M.
, and
Roberts
,
C. J.
, 2007, “
A Lumry–Eyring Nucleated Polymerization Model of Protein Aggregation Kinetics 1: Aggregation With Pre-Equilibrated Unfolding
,”
J. Phys. Chem. B
1089-5647,
111
, pp.
7897
7913
.
17.
Roberts
,
C. J.
, 2007, “
Non-native Protein Aggregation Kinetics
,”
Biotechnol. Bioeng.
0006-3592,
98
, pp.
927
938
.
18.
DeYoung
,
L. R.
,
Fink
,
A. L.
, and
Dill
,
K. A.
, 1993, “
Aggregation of Globular Proteins
,”
Acc. Chem. Res.
0001-4842,
26
, pp.
614
620
.
19.
Georgiou
,
G.
,
Valax
,
P.
,
Ostermeier
,
M.
, and
Horowitz
,
P. M.
, 1994, “
Folding and Aggregation of TEM β-Lactamase: Analogies With the Formation of Inclusion Bodies of Escherichia coli
,”
Protein Sci.
0961-8368,
3
, pp.
1953
1960
.
20.
Horowich
,
A.
, 2002, “
Protein Aggregation in Disease: A Role for Folding Intermediates Forming Specific Multimeric Interactions
,”
J. Clin. Invest.
0021-9738,
110
, pp.
1221
1232
.
21.
Nephew
,
J. B.
,
Nihei
,
T. C.
, and
Carter
,
S. A.
, 1998, “
Reaction-Induced Phase Separation Dynamics: A Polymer in a Liquid Crystal Solvent
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
3276
3279
.
22.
Tran-Cong
,
Q.
, and
Harada
,
A.
, 1996, “
Reaction-Induced Ordering Phenomena in Binary Polymer Mixtures
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
1162
1165
.
23.
Kyu
,
T.
, and
Lee
,
J. H.
, 1996, “
Nucleation Initiated Spinodal Decomposition in a Polymerizing System
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
3746
3749
.
24.
Williams
,
R. J. J.
,
Rozenberg
,
B. A.
, and
Pascault
,
J. -P.
, 1997, “
Reaction-Induced Phase Separation in Modified Thermosetting
,”
Adv. Polym. Sci.
0065-3195,
128
, pp.
95
156
.
25.
Luo
,
K.
, 2006, “
The Morphology and Dynamics of Polymerization-Induced Phase Separation
,”
Eur. Polym. J.
0014-3057,
42
, pp.
1499
1505
.
26.
Wang
,
X.
,
Okada
,
M.
,
Matsushita
,
Y.
,
Furukawa
,
H.
, and
Han
,
C. C.
, 2005, “
Crystal-Like Array Formation in Phase Separation Induced by Radical Polymerization
,”
Macromolecules
0024-9297,
38
, pp.
7127
7133
.
27.
Kimura
,
K.
,
Kohama
,
S. -i.
, and
Yamazaki
,
S.
, 2006, “
Morphology Control of Aromatic Polymers in Concert With Polymerization
,”
Polym. J.
,
38
, pp.
1005
1022
. 0032-3896
28.
Wang
,
Y.
, and
Annunziata
,
O.
, 2008, “
Liquid-Liquid Phase Transition of Protein Aqueous Solutions Isothermally Induced by Protein Cross-Linking
,”
Langmuir
0743-7463,
24
, pp.
2799
2807
.
29.
San Biagio
,
P. L.
, and
Palma
,
M.
, 1991, “
Spinodal Lines and Flory–Huggins Free-Energies for Solutions of Human Hemoglobin HbS and HbA
,”
Biophys. J.
0006-3495,
60
, pp.
508
512
.
30.
Sciortino
,
F.
,
Prasad
,
K. U.
,
Urry
,
D. W.
, and
Palma
,
M. U.
, 1993, “
Self-Assembly of Biopolymeric Structures From Solutions: Mean-Field Critical Behavior and Flory–Huggins Free-Energy of Interactions
,”
Biopolymers
0006-3525,
33
, pp.
743
752
.
31.
ten Wolde
,
P. R.
, and
Frenkel
,
D.
, 1997, “
Enhancement of Protein Crystal Nucleation by Critical Density Fluctuations
,”
Science
0036-8075,
277
, pp.
1975
1978
.
32.
Galkin
,
O.
, and
Vekilov
,
P. G.
, 2000, “
Control of Protein Crystal Nucleation Around the Metastable Liquid-Liquid Phase Boundary
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
, pp.
6277
6281
.
33.
Serrano
,
M. D.
,
Galkin
,
O.
,
Yau
,
S. T.
,
Thomas
,
B. R.
,
Nagel
,
R. L.
,
Hirsch
,
R. E.
, and
Vekilov
,
P. G.
, 2001, “
Are Protein Crystallization Mechanisms Relevant to Understanding and Control of Polymerization of Deoxyhemoglobin S?
,”
J. Cryst. Growth
0022-0248,
232
, pp.
368
375
.
34.
Chen
,
Q.
,
Vekilov
,
P. G.
,
Nagel
,
R. L.
, and
Hirsch
,
R. E.
, 2004, “
Liquid-Liquid Phase Separation in Hemoglobin: Distinct Aggregation Mechanisms of the β6 Mutants
,”
Biophys. J.
0006-3495,
86
, pp.
1702
1712
.
35.
Vaiana
,
S. M.
,
Rotter
,
M. A.
,
Emanuele
,
A.
,
Ferrone
,
F. A.
, and
Palma-Vittorelli
,
M. B.
, 2005, “
Effect of T-R Conformational Change on Sickle-Cell Hemoglobin Interactions and Aggregation
,”
Proteins
0887-3585,
58
, pp.
426
438
.
36.
Gliko
,
O.
,
Neumaier
,
N.
,
Pan
,
W.
,
Weichun
,
H.
,
Haase
,
I.
,
Fischer
,
M.
,
Bacher
,
A.
,
Weinkauf
,
S.
, and
Vekilov
,
P. G.
, 2005, “
A Metastable Prerequisite for the Growth of Lumazine Synthase Crystals
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
3433
3438
.
37.
Vaiana
,
S. M.
,
Palma-Vittorelli
,
M. B.
, and
Palma
,
M. U.
, 2003, “
Time Scale of Protein Aggregation Dictated by Liquid-Liquid Demixing
,”
Proteins
0887-3585,
51
, pp.
147
153
.
38.
Kashchiev
,
D.
,
Vekilov
,
P. G.
, and
Kolomeisky
,
A. B.
, 2005, “
Kinetics of Two-Step Nucleation of Crystals
,”
J. Chem. Phys.
0021-9606,
122
, p.
244706
.
39.
Cheung
,
J. K.
, and
Truskett
,
T. M.
, 2005, “
Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions
,”
Biophys. J.
0006-3495,
89
, pp.
2372
2384
.
40.
Shen
,
V. K.
,
Cheung
,
J. K.
,
Errington
,
J. R.
, and
Truskett
,
T. M.
, 2006, “
Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions ii: Phase Behavior
,”
Biophys. J.
0006-3495,
90
, pp.
1949
1960
.
41.
Cheung
,
J. K.
,
Shen
,
V. K.
,
Errington
,
J. R.
, and
Truskett
,
T. M.
, 2007, “
Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions iii: Directional Protein Interactions
,”
Biophys. J.
0006-3495,
92
, pp.
4316
4324
.
42.
Fields
,
G. B.
,
Alonso
,
D.
,
Stigter
,
D.
, and
Dill
,
K. A.
, 1992, “
Theory for the Aggregation of Protein Copolymers
,”
J. Phys. Chem.
0022-3654,
96
, pp.
3974
3981
.
43.
Zimmerman
,
S. B.
, and
Minton
,
A. P.
, 1993, “
Macromolecular Crowding: Biochemical, Biophysical and Physiological Consequences
,”
Annu. Rev. Biophys. Biomol. Struct.
1056-8700,
22
, pp.
27
65
.
44.
Smith
,
A. V.
, and
Hall
,
C. K.
, 2001, “
Protein Refolding Versus Aggregation: Computer Simulations on an Intermediate-Resolution Protein Model
,”
J. Mol. Biol.
0022-2836,
312
, pp.
187
202
.
45.
Dima
,
R. I.
, and
Thirumalai
,
D.
, 2002, “
Exploring Protein Aggregation and Self-Propagation Using Lattice Models: Phase Diagrams and Kinetics
,”
Protein Sci.
0961-8368,
11
, pp.
1036
1049
.
46.
Braun
,
F. N.
, 2002, “
Adhesion and Liquid-Liquid Phase Separation in Globular Protein Solutions
,”
J. Chem. Phys.
0021-9606,
116
, pp.
6826
6830
.
47.
Hall
,
D.
, and
Minton
,
A. P.
, 2003, “
Macromolecular Crowding: Qualitative and Semiquantitative Successes, Quantitative Challenges
,”
Biochim. Biophys. Acta
0006-3002,
1649
, pp.
127
139
.
48.
Kinjo
,
A. R.
, and
Takada
,
S.
, 2003, “
Competition Between Protein Folding and Aggregation With Molecular Chaperones in Crowded Solutions: Insight From Mesoscopic Simulations
,”
Biophys. J.
0006-3495,
85
, pp.
3521
3531
.
49.
Jang
,
H.
,
Hall
,
C. K.
, and
Zhou
,
Y.
, 2004, “
Thermodynamics and Stability of a β-Sheet Complex: Molecular Dynamics Simulations on Simplified Off-Lattice Protein Models
,”
Protein Sci.
0961-8368,
13
, pp.
40
53
.
50.
Nguyen
,
H. D.
, and
Hall
,
C. K.
, 2004, “
Molecular Dynamics Simulations of Spontaneous Fibril Formation by Random-Coil Peptides
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, pp.
16180
16185
.
51.
Nguyen
,
H. D.
, and
Hall
,
C. K.
, 2004, “
Phase Diagrams Describing Fibrillization by Polyalanine Peptides
,”
Biophys. J.
0006-3495,
87
, pp.
4122
4134
.
52.
Sear
,
R. P.
, 2004, “
Solution Stability and Variability in a Simple Model of Globular Proteins
,”
J. Chem. Phys.
0021-9606,
120
, pp.
998
1005
.
53.
Cheung
,
M. S.
,
Klimov
,
D.
, and
Thirumalai
,
D.
, 2005, “
Molecular Crowding Enhances Native State Stability and Refolding Rates of Globular Proteins
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
, pp.
4753
4758
.
54.
Dill
,
K. A.
, 1985, “
Theory for the Folding and Stability of Globular Proteins
,”
Biochemistry
0006-2960,
24
, pp.
1501
1509
.
55.
Dill
,
K. A.
,
Alonso
,
D. O. V.
, and
Hutchinson
,
K.
, 1989, “
Thermal Stability of Globular Proteins
,”
Biochemistry
0006-2960,
28
, pp.
5439
5449
.
56.
Errington
,
J. R.
, 2003, “
Direct Calculation of Liquid-Vapor Phase Equilibria From Transition Matrix Monte Carlo Simulation
,”
J. Chem. Phys.
0021-9606,
118
, pp.
9915
9925
.
57.
Shen
,
V. K.
, and
Errington
,
J. R.
, 2005, “
Determination of Fluid-Phase Behavior Using Transition-Matrix Monte Carlo: Binary Lennard-Jones Mixtures
,”
J. Chem. Phys.
0021-9606,
122
, p.
064508
.
58.
Errington
,
J. R.
, and
Shen
,
V. K.
, 2005, “
Direct Evaluation of Multi-Componenet Phase Equilibria Using Flat Histogram Methods
,”
J. Chem. Phys.
0021-9606,
123
, p.
164103
.
59.
Klimov
,
D. K.
,
Newfield
,
D.
, and
Thirumalai
,
D.
, 2002, “
Simulations of β-Hairpin Folding Confined to Spherical Pores Using Distributed Computing
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
8019
8024
.
60.
Ping
,
G.
,
Yuan
,
J. M.
,
Mallieres
,
M.
,
Dong
,
H.
,
Sun
,
Z.
,
Wei
,
Y.
,
Li
,
F. Y.
, and
Lin
,
S. H.
, 2003, “
Effects of Confinement on Protein Folding and Stability
,”
J. Chem. Phys.
0021-9606,
118
, pp.
8042
8048
.
61.
Takagi
,
F.
,
Koga
,
N.
, and
Takada
,
S.
, 2003, “
How Protein Thermodynamics and Folding Mechanisms are Altered by the Chaperonin Cage: Molecular Simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
11367
11372
.
62.
Friedel
,
M.
,
Sheeler
,
D. J.
, and
Shea
,
J. -E.
, 2003, “
Effects of Confinement on the Thermodynamics and Kinetics of Folding of a Minimalist β-Barrel Protein
,”
J. Chem. Phys.
0021-9606,
118
, pp.
8106
8113
.
63.
Rathore
,
N.
,
Knotts
,
T. A.
, IV
, and
de Pablo
,
J. J.
, 2006, “
Confinement Effects on the Thermodynamics of Protein Folding: Monte Carlo Simulations
,”
Biophys. J.
0006-3495,
90
, pp.
1767
1773
.
64.
Cheung
,
M. S.
, and
Thirumalai
,
D.
, 2007, “
Effects of Crowding and Confinement on the Structures of the Transition State Ensemble in Proteins
,”
J. Phys. Chem. B
1089-5647,
111
, pp.
8250
8257
.
65.
Ueda
,
Y.
,
Taketomi
,
H.
, and
Go
,
N.
, 1978, “
Studies on Protein Folding, Unfolding, and Fluctuations by Computer Simulation. ii. A Three-Dimensional Lattice Model of Lysozyme
,”
Biopolymers
0006-3525,
17
, pp.
1531
1548
.
66.
Petsev
,
D. N.
,
Wu
,
X.
,
Galkin
,
O.
, and
Vekilov
,
P. G.
, 2003, “
Thermodynamic Functions of Concentrated Protein Solutions From Phase Equilibria
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
3921
3926
.
67.
Privalov
,
P. L.
, 1979, “
Stability of Proteins: Small Globular Proteins
,”
Adv. Protein Chem.
0065-3233,
33
, pp.
167
241
.
68.
Cheung
,
J. K.
,
Shah
,
P.
, and
Truskett
,
T. M.
, 2006, “
Heteropolymer Collapse Theory for Protein Folding in the Pressure-Temperature Plane
,”
Biophys. J.
0006-3495,
91
, pp.
2427
2435
.
69.
Stigter
,
D.
,
Alonso
,
D. O. V.
, and
Dill
,
K. A.
, 1991, “
Protein Stability: Electrostatic Compact Denatured States
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
88
, pp.
4176
4180
.
70.
Alonso
,
D. O. V.
,
Dill
,
K. A.
, and
Stigter
,
D.
, 1991, “
The Three States of Globular Proteins: Acid Denaturation
,”
Biopolymers
0006-3525,
31
, pp.
1631
1649
.
71.
Singh
,
J. K.
,
Kofke
,
D. A.
, and
Errington
,
J. R.
, 2003, “
Surface Tension and Vapor-Liquid Phase Coexistence of the Square-Well Fluid
,”
J. Chem. Phys.
0021-9606,
119
, pp.
3405
3412
.
72.
Shen
,
V. K.
, and
Errington
,
J. R.
, 2004, “
Metastability and Instability in the Lennard-Jones Investigated via Transition-Matrix Monte Carlo
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
19595
19606
.
73.
Singh
,
J. K.
, and
Kofke
,
D. A.
, 2004, “
Molecular Simulation Study of Effect of Molecular Association on Vapor-Liquid Interfacial Properties
,”
J. Chem. Phys.
0021-9606,
121
, pp.
9574
9580
.
74.
Singh
,
J. K.
, and
Errington
,
J. R.
, 2006, “
Calculation of Phase Coexistence Properties and Surface Tensions of n-Alkanes Using Grand-Canonical Transition-Matrix Monte Carlo Simulation and Finite-Size Scaling
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
1369
1376
.
75.
Singh
,
J. K.
,
Adhikari
,
J.
, and
Kwak
,
S. K.
, 2006, “
Vapor-Liquid Phase Coexistence Curves for Morse Fluids
,”
Fluid Phase Equilib.
0378-3812,
248
, pp.
1
6
.
76.
Errington
,
J. R.
,
Truskett
,
T. M.
, and
Mittal
,
J.
, 2006, “
Excess-Entropy-Based Anomalies for a Waterlike Fluid
,”
J. Chem. Phys.
0021-9606,
125
, p.
244502
.
77.
Mittal
,
J.
,
Errington
,
J. R.
, and
Truskett
,
T. M.
, 2006, “
Thermodynamics Predicts how Confinement Modifies the Dynamics of the Equilibrium Hard-Sphere Fluid
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
177804
.
78.
MacDowell
,
L. G.
,
Shen
,
V. K.
, and
Errington
,
J. R.
, 2006, “
Nucleation and Cavitation of Spherical, Cylindrical, and Slablike Droplets and Bubbles in Small Systems
,”
J. Chem. Phys.
0021-9606,
125
, p.
034705
.
79.
Errington
,
J. R.
, 2003, “
Evaluating Surface Tension Using Grand-Canonical Transition-Matrix Monte Carlo Simulation and Finite-Size Scaling
,”
Phys. Rev. E
1063-651X,
67
, p.
012102
.
80.
Shen
,
V. K.
, and
Errington
,
J. R.
, 2006, “
Determination of Surface Tension in Binary Mixtures Using Transition-Matrix Monte Carlo
,”
J. Chem. Phys.
0021-9606,
124
, p.
024721
.
81.
Shen
,
V. K.
,
Mountain
,
R. D.
, and
Errington
,
J. R.
, 2007, “
Comparative Study of the Effect of the Effect of Tail Corrections on Surface Tension Determined by Molecular Simulation
,”
J. Phys. Chem. B
1089-5647,
111
, pp.
6198
6207
.
82.
Errington
,
J. R.
, and
Kofke
,
D. A.
, 2007, “
Calculation of Surface Tension via Area Sampling
,”
J. Chem. Phys.
0021-9606,
127
, p.
174709
.
83.
Cichowski
,
E. C.
,
Schmidt
,
T. R.
, and
Errington
,
J. R.
, 2005, “
Determination of Henry's Law Constants Through Transition Matrix Monte Carlo Simulation
,”
Fluid Phase Equilib.
0378-3812,
236
, pp.
58
65
.
84.
Errington
,
J. R.
, and
Wilbert
,
D. W.
, 2005, “
Prewetting Boundary Tensions From Monte Carlo Simulation
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
226107
.
85.
Errington
,
J. R.
, 2004, “
Prewetting Transitions for a Model Argon on Solid Carbon Dioxide System
,”
Langmuir
0743-7463,
20
, pp.
3798
3804
.
86.
Grzelak
,
E. M.
, and
Errington
,
J. R.
, 2008, “
Computation of Interfacial Properties via Grand Canonical Transition Matrix Monte Carlo Simulation
,”
J. Chem. Phys.
0021-9606,
128
, p.
014710
.
87.
Rosch
,
T. W.
, and
Errington
,
J. R.
, 2007, “
Investigation of the Phase Behavior of an Embedded Charge Protein Model Through Molecular Simulation
,”
J. Phys. Chem. B
1089-5647,
111
, pp.
12591
12598
.
88.
Chen
,
H.
, and
Sholl
,
D. S.
, 2006, “
Efficient Simulation of Binary Adsorption Isotherms Using Transition-Matrix Monte Carlo
,”
Langmuir
0743-7463,
22
, pp.
709
716
.
89.
Chen
,
H.
, and
Sholl
,
D. S.
, 2007, “
Examining the Accuracy of Ideal Adsorbed Solution Theory Without Curve-Fitting Using Transition Matrix Monte Carlo Simulations
,”
Langmuir
0743-7463,
23
, pp.
6431
6437
.
90.
Paluch
,
A. S.
,
Shen
,
V. K.
, and
Errington
,
J. R.
, 2008, “
Comparing the Use of Gibbs Ensemble and Grand-Canonical Transition-Matrix Monte Carlo Methods to Determine Phase Equilibria
,”
Ind. Eng. Chem. Res.
0888-5885,
47
, pp.
4533
4541
.
91.
Ferrenberg
,
A. M.
, and
Swendsen
,
R. H.
, 1988, “
New Monte Carlo Technique for Studying Phase Transitions
,”
Phys. Rev. Lett.
0031-9007,
61
, pp.
2635
2638
.
You do not currently have access to this content.