Biotransport, by its nature, is concerned with the motions of molecules in biological systems while water remains as the most important and the most commonly studied molecule across all disciplines. In this review, we focus on biopreservation and thermal therapies from the perspective of water, exploring how its molecular motions, properties, kinetic, and thermodynamic transitions govern biotransport phenomena and enable preservation or controlled destruction of biological systems.

1.
Brekke
,
O. H.
, and
Sandlie
,
I.
, 2003, “
Therapeutic Antibodies for Human Diseases at the Dawn of the Twenty-First Century
,”
Nat. Rev. Drug Discovery
1474-1776,
2
(
1
), pp.
52
62
.
2.
Preti
,
R. A.
, 2005, “
Bringing Safe and Effective Cell Therapies to the Bedside
,”
Nat. Biotechnol.
1087-0156,
23
(
7
), pp.
801
804
.
3.
Goel
,
R.
,
Swanlund
,
D.
,
Coad
,
J.
,
Paciotti
,
G. F.
,
Bischof
,
J. C.
, 2007, “
TNF-Alpha-Based Accentuation in Cryoinjury—Dose, Delivery, and Response
,”
Mol. Cancer Ther.
,
6
(
7
), pp.
2039
2047
. 1535-7163
4.
Ahmed
,
M.
, and
Goldberg
,
S. N.
, 2004, “
Combination Radiofrequency Thermal Ablation and Adjuvant IV Liposomal Doxorubicin Increases Tissue Coagulation and Intratumoural Drug Accumulation
,”
Int. J. Hyperthermia
0265-6736,
20
(
7
), pp.
781
802
.
5.
Jones
,
J. S.
,
Rewcastle
,
J. C.
,
Donnelly
,
B. J.
,
Lugnani
,
F. M.
,
Pisters
,
L. L.
, and
Katz
,
A. E.
, 2008, “
Whole Gland Primary Prostate Cryoablation: Initial Results From the Cryo On-Line Data Registry
,”
J. Urol.
,
180
(
2
), pp.
554
548
. 0022-5347
6.
Mazur
,
P.
, 1963, “
Kinetics of Water Loss From Cells at Subzero Temperature and the Likelihood of Intracellular Freezing
,”
J. Gen. Physiol.
0022-1295,
47
, pp.
347
369
.
7.
McGrath
,
J. J.
, and
Diller
,
K. R.
, 1988, “
Low Temperature Biotechnology: Emerging Applications and Engineering Contributions
,” presented at the
Winter Annual Meeting of the American Society of Mechanical Engineers
, Chicago, IL, Nov. 27–Dec. 2,
American Society of Mechanical Engineers
,
New York
, Vol.
10
, p.
380
.
8.
Leibo
,
S. P.
, and
Mazur
,
P.
, 1971, “
The Role of Cooling Rates in Low-Temperature Preservation
,”
Cryobiology
0011-2240,
8
(
5
), pp.
447
452
.
9.
Mazur
,
P.
,
Leibo
,
S. P.
, and
Chu
,
E. H.
, 1972, “
A Two-Factor Hypothesis of Freezing Injury. Evidence From Chinese Hamster Tissue-Culture Cells
,”
Exp. Cell Res.
0014-4827,
71
(
2
), pp.
345
355
.
10.
Wusteman
,
M. C.
, and
Hunt
,
C. J.
, 2004, “
The Scientific Basis for Tissue Banking
,”
Life in the Frozen State
,
B. J.
Fuller
,
N.
Lane
, and
E.
Benson
, eds.,
CRC
,
Boca Raton, FL
.
11.
Diller
,
K. R.
, 1990, “
A Simple Procedure for Determining Spatial and Transient Variations of Cooling Rate Within a Specimen During Cryopreservation. Part 2: Graphical Solutions
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
204
(
3
), pp.
188
197
.
12.
Diller
,
K. R.
, 1990, “
A Simple Procedure for Determining Spatial and Transient Variations of Cooling Rate Within a Specimen During Cryopreservation. Part 1: Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
204
(
38
), pp.
179
187
.
13.
Sabel
,
M. S.
, 2009, “
Cryo-Immunology: A Review of the Literature and Proposed Mechanisms for Stimulatory Versus Suppressive Immune Responses
,”
Cryobiology
0011-2240,
58
(
1
), pp.
1
11
.
14.
Hall
,
D.
, 2002, “
On the Role of the Macromolecular Phase Transitions in Biology in Response to Change in Solution Volume or Macromolecular Composition: Action as an Entropy Buffer
,”
Biophys. Chem.
0301-4622,
98
, pp.
233
248
.
15.
Franks
,
F.
, 1979,
Water: A Comprehensive Treatise
,
Plenum
,
New York
.
16.
Aksan
,
A.
, and
Toner
,
M.
, 2006, “
Roles of Thermodynamic State and Molecular Mobility in Biopreservation
,”
Tissue Engineering and Artificial Organs
,
J. D.
Bronzino
, ed.,
Taylor & Francis
,
Boca Raton, FL
, pp.
1
20
.
17.
Oleinikova
,
A.
,
Smolin
,
N.
, and
Brovchenko
,
I.
, 2007, “
Influence of Water Clustering on the Dynamics of Hydration Water at the Surface of Lysozyme
,”
Biophys. J.
0006-3495,
93
, pp.
2986
3000
.
18.
Zhang
,
L.
,
Wang
,
L.
,
Kao
,
Y.-T.
,
Qiu
,
W.
,
Yang
,
Y.
,
Okobiah
,
O.
, and
Zhong
,
D.
, 2007, “
Mapping Hydration Dynamics Around a Protein Surface
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
(
47
), pp.
18461
18466
.
19.
Koga
,
K.
,
Tanaka
,
H.
, and
Zeng
,
X. C.
, 2000, “
First-Order Transition in Confined Water Between High-Density Liquid and Low-Density Amorphous Phases
,”
Nature (London)
0028-0836,
408
, pp.
564
567
.
20.
Li
,
T. -D.
,
Gao
,
J.
,
Szoszkiewicz
,
R.
,
Landman
,
U.
, and
Riedo
,
E.
, 2007, “
Structured and Viscous Water in Subnanometer Gaps
,”
Phys. Rev. B
0163-1829,
75
, p.
115415
.
21.
Scheidler
,
P.
,
Kob
,
W.
, and
Binder
,
K.
, 2002, “
Cooperative Motion and Growing Length Scales in Supercooled Confined Liquids
,”
Europhys. Lett.
0295-5075,
59
(
5
), pp.
701
707
.
22.
Schreiber
,
A.
,
Ketelsen
,
I.
, and
Findenegg
,
G. H.
, 2001, “
Melting and Freezing of Water in Ordered Mesoporous Silica Materials
,”
Phys. Chem. Chem. Phys.
1463-9076,
3
, pp.
1185
1195
.
23.
Chu
,
X. -Q.
,
Kolesnikov
,
A. I.
,
Moravsky
,
A. P.
,
Garcia-Sakai
,
V.
, and
Chen
,
S. -H.
, 2007, “
Observation of a Dynamic Crossover in Water Confined in Double-Wall Carbon Nanotubes
,”
Phys. Rev. E
1063-651X,
76
, p.
021505
.
24.
Raviv
,
U.
,
Giasson
,
S.
,
Frey
,
J.
, and
Klein
,
J.
, 2002, “
Viscosity of Ultra-Thin Water Films Confined Between Hydrophobic or Hydrophilic Surfaces
,”
J. Phys.: Condens. Matter
0953-8984,
14
, pp.
9275
9283
.
25.
Ellison
,
C. J.
, and
Torkelson
,
J. M.
, 2003, “
The Distribution of Glass-Transition Temperatures in Nanoscopically Confined Glass Formers
,”
Nature Mater.
1476-1122,
2
, pp.
695
700
.
26.
Zhang
,
J.
,
Liu
,
G.
, and
Jonas
,
J.
, 1992, “
Effects of Confinement on the Glass Transition Temperature of Molecular Liquids
,”
J. Phys. Chem.
0022-3654,
96
, pp.
3478
3480
.
27.
Kurzynski
,
M.
, 2006,
The Thermodynamic Machinery of Life
,
Springer
,
New York
.
28.
Frauenfelder
,
H.
,
Sligar
,
S. G.
, and
Wolynes
,
P. G.
, 1991, “
The Energy Landscapes and Motions of Proteins
,”
Science
0036-8075,
254
, pp.
1598
1603
.
29.
Fenimore
,
P. W.
,
Frauenfelder
,
H.
,
McMahon
,
B. H.
, and
Young
,
R. D.
, 2004, “
Bulk-Solvent and Hydration-Shell Fluctuations, Similar to A- and B-Fluctuations in Glasses, Control Protein Motions and Functions
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
40
), pp.
14408
14413
.
30.
Reat
,
V.
,
Dunn
,
R.
,
Ferrand
,
M.
,
Finney
,
J. L.
,
Daniel
,
R. M.
, and
Smith
,
J. C.
, 2000, “
Solvent Dependence of Dynamic Transitions in Protein Solutions
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
(
18
), pp.
9961
9966
.
31.
Fenimore
,
P. W.
,
Frauenfelder
,
H.
,
McMahon
,
B. H.
, and
Parak
,
F. G.
, 2002, “
Slaving: Solvent Fluctuations Dominate Protein Dynamics and Functions
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
25
), pp.
16047
16051
.
32.
Shen
,
V. K.
,
Cheung
,
J. K.
,
Errington
,
J. R.
, and
Truskett
,
T. M.
, 2009, “
Insights Into Crowding Effects on Protein Stability From a Corse-Grained Model
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
071002
.
33.
Wood
,
K.
,
Plazanet
,
M.
,
Gabel
,
F.
,
Kessler
,
B.
,
Oesterhelt
,
D.
,
Tobias
,
D. J.
,
Zaccai
,
G.
, and
Weik
,
M.
, 2007, “
Coupling of Protein and Hydration-Water Dynamics in Biological Membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
(
46
), pp.
18049
18054
.
34.
Doster
,
W.
,
Cusack
,
S.
, and
Petry
,
W.
, 1989, “
Dynamic Transition of Myoglobin Revealed by Inelastic Neutron Scattering
,”
Nature (London)
0028-0836,
337
, pp.
754
756
.
35.
Iben
,
I. E. T.
,
Braunstein
,
D.
,
Doster
,
W.
,
Frauenfelder
,
H.
,
Hong
,
M. K.
,
Johnson
,
J. B.
,
Luck
,
S.
,
Ormos
,
P.
,
Schulte
,
A.
,
Steinbach
,
P. J.
,
Xie
,
A. H.
, and
Young
,
R. D.
, 1989, “
Glassy Behavior of a Protein
,”
Phys. Rev. Lett.
0031-9007,
62
(
16
), pp.
1916
1919
.
36.
Tsai
,
A. M.
,
Neumann
,
D. A.
, and
Bell
,
L. N.
, 2000, “
Molecular Dynamics of Solid-State Lysozyme as Affected by Glycerol and Water: A Neutron Scattering Study
,”
Biophys. J.
0006-3495,
79
, pp.
2728
2732
.
37.
Tournier
,
A. L.
,
Xu
,
J.
, and
Smith
,
J. C.
, 2003, “
Translational Hydration Water Dynamics Drives the Protein Glass Transition
,”
Biophys. J.
0006-3495,
85
, pp.
1871
1875
.
38.
Faraone
,
A.
,
Liu
,
L.
,
Mou
,
C.-Y.
,
Yen
,
C.-W.
, and
Chen
,
S.-H.
, 2004, “
Fragile-to-Strong Liquid Transition in Deeply Supercooled Confined Water
,”
J. Chem. Phys.
0021-9606,
121
(
22
), pp.
10843
10846
.
39.
Murphy
,
D. M.
, and
Koop
,
T.
, 2005, “
Review of the Vapour Pressures of Ice and Supercooled Water for Atmospheric Applications
,”
Q. J. R. Meteorol. Soc.
0035-9009,
131
, pp.
1539
1565
.
40.
Swenson
,
J.
,
Jansson
,
H.
, and
Bergman
,
R.
, 2006, “
Relaxation Process in Supercooled Confined Water and Implications for Protein Dynamics
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
247802
.
41.
Reategui
,
E.
, and
Aksan
,
A.
, 2009, “
Effects of the Low Temperature Transitions of Confined Water on the Structures of Isolated and Cytoplasmic Proteins
,”
J. Phys. Chem. B
1089-5647, in review.
42.
Lichtenegger
,
H.
,
Doster
,
W.
,
Kleinert
,
T.
,
Birk
,
A.
,
Sepiol
,
B.
, and
Vogl
,
G.
, 1999, “
Heme-Solvent Coupling: A Mössbauer Study of Myoglobin in Sucrose
,”
Biophys. J.
0006-3495,
76
, pp.
414
422
.
43.
Fitter
,
J.
, 1999, “
The Temperature Dependence of Internal Molecular Motions in Hydrated and Dry a-Amylase: The Role of Hydration Water in the Dynamical Transition of Proteins
,”
Biophys. J.
0006-3495,
76
, pp.
1034
1042
.
44.
Cordone
,
L.
,
Ferrand
,
M.
,
Vitrano
,
E.
, and
Zaccai
,
G.
, 1999, “
Harmonic Behavior of Trehalose-Coated Carbon-Monoxy-Myoglobin at High Temperature
,”
Biophys. J.
0006-3495,
76
, pp.
1043
1047
.
45.
Wright
,
N. T.
, and
Humphrey
,
J. D.
, 2002, “
Denaturation of Collagen Via Heating: An Irreversible Rate Process
,”
Annu. Rev. Biomed. Eng.
1523-9829,
4
, pp.
109
128
.
46.
Diller
,
K.
, 1997, “
Engineering-Based Contributions in Cryobiology
,”
Cryobiology
0011-2240,
34
, pp.
304
314
.
47.
McGrath
,
J.
, 1997, “
Quantitative Measurement of Cell Membrane Transport: Technology and Applications
,”
Cryobiology
0011-2240,
34
, pp.
315
334
.
48.
Hsiu-hung
,
C.
,
Shen
,
H.
,
Heimfeld
,
S.
,
Tran
,
K.
,
Reems
,
J.
,
Folch
,
A.
, and
Gao
,
D.
, 2008, “
A Microfluidic Study of Mouse Dendritic Cell Membrane Transport Properties of Water and Cryoprotectants
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
23–24
, pp.
5687
5694
.
49.
Curry
,
M. R.
,
Kleinhans
,
F. W.
, and
Watson
,
P. F.
, 2000, “
Measurement of the Water Permeability of the Membranes of Boar, Ram, and Rabbit Spermatozoa Using Concentration-Dependent Self-Quenching of an Entrapped Fluorophore
,”
Cryobiology
0011-2240,
41
(
2
), pp.
167
173
.
50.
Kleinhans
,
F. W.
, 1998, “
Membrane Permeability Modeling: Kedem–Katchalsky vs a Two-Parameter Formalism
,”
Cryobiology
0011-2240,
37
(
4
), pp.
271
289
.
51.
Karlsson
,
J.
, and
Toner
,
M.
, 2000, “
Cryopreservation
,”
Principes of Tissue Engineering
,
J.
Vacanti
and
R.
Langer
, eds.,
Academic
,
San Diego
, pp.
293
307
.
52.
Devireddy
,
R. V.
,
Raha
,
D.
, and
Bischof
,
J. C.
, 1998, “
Measurement of Water Transport During Freezing in Cell Suspensions Using a Differential Scanning Calorimeter
,”
Cryobiology
0011-2240,
36
(
2
), pp.
124
155
.
53.
Wolkers
,
W. F.
,
Balasubramanian
,
S. K.
,
Ongstad
,
E. L.
,
Zec
,
H. C.
, and
Bischof
,
J. C.
, 2007, “
Effects of Freezing on Membranes and Proteins in LNCaP Prostate Tumor Cells
,”
Biochim. Biophys. Acta
0006-3002,
1768
(
3
), pp.
728
736
.
54.
Jansson
,
H.
,
Huldt
,
C.
,
Bergman
,
R.
, and
Swenson
,
J.
, 2005, “
Dynamics of Water in Strawberry and Red Onion as Studied by Dielectric Spectroscopy
,”
Phys. Rev. E
1063-651X,
71
(
1 Pt 1
), p.
011901
.
55.
Potma
,
E.
,
de Boeij
,
W. P.
,
van Haastert
,
P. J.
, and
Wiersma
,
D. A.
, 2001, “
Real-Time Visualization of Intracellular Hydrodynamics in Single Living Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
(
4
), pp.
1577
1582
.
56.
Fukuma
,
T.
,
Higgins
,
M. J.
, and
Jarvis
,
S. P.
, 2007, “
Direct Imaging of Individual Intrinsic Hydration Layers on Lipid Bilayers at Ångstrom Resolution
,”
Biophys. J.
0006-3495,
92
, pp.
3603
3609
.
57.
Berkowitz
,
M. L.
,
Bostick
,
D. L.
, and
Pandit
,
S.
, 2006, “
Aqueous Solutions Next to Phospholipid Membrane Surfaces: Insights From Simulations
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
106
, pp.
1527
1539
.
58.
Jendrasiak
,
G. J.
, and
Hasty
,
J. H.
, 1974, “
The Hydration of Phospholipids
,”
Biochim. Biophys. Acta
0006-3002,
337
, pp.
79
91
.
59.
Binder
,
H.
, 2007, “
Water Near Lipid Membranes as Seen by Infrared Spectroscopy
,”
Eur. Biophys. J.
0175-7571,
36
(
4
), pp.
265
279
.
60.
Milhaud
,
J.
, 2004, “
New Insights Into Water–Phospholipid Model Membrane Interactions
,”
Biochim. Biophys. Acta
0006-3002,
1663
, pp.
19
51
.
61.
Hincha
,
D. K.
, and
Hagemann
,
M.
, 2004, “
Stabilization of Model Membranes During Drying by Compatible Solutes Involved in the Stress Tolerance of Plants and Microorganisms
,”
Biochem. J.
0264-6021,
383
, pp.
277
283
.
62.
Charrier
,
A.
, and
Thibaudau
,
F.
, 2005, “
Main Phase Transitions in Supported Lipid Single-Bilayer
,”
Biophys. J.
0006-3495,
89
, pp.
1094
1101
.
63.
Fox
,
C. B.
,
Myers
,
G. A.
, and
Harris
,
J. M.
, 2007, “
Temperature-Controlled Confocal Raman Microscopy to Detect Phase Transitions in Phospholipid Vesicles
,”
Appl. Spectrosc.
0003-7028,
61
(
5
), pp.
465
469
.
64.
Kint
,
S.
,
Wermer
,
P. H.
, and
Scherer
,
J. R.
, 1992, “
Raman Spectra of Hydrated Phospholipid Bilayers. 2. Water and Head-Group Interactions
,”
J. Phys. Chem.
0022-3654,
96
(
1
), pp.
446
452
.
65.
Morrow
,
M. R.
,
Whitehead
,
J. P.
, and
Lu
,
D.
, 1992, “
Chain-Length Dependence of Lipid Bilayer Properties Near the Liquid Crystal to Gel Phase Transition
,”
Biophys. J.
0006-3495,
63
, pp.
18
27
.
66.
Cruzeiro-Hansson
,
L.
, and
Mouritsen
,
O. G.
, 1988, “
Passive Ion Permeability of Lipid Membranes Modelled Via Lipid-Domain Interfacial Area
,”
Biochim. Biophys. Acta
0006-3002,
944
, pp.
63
72
.
67.
Stuchly
,
M. A.
,
Stuchly
,
S. S.
,
Liburdy
,
R. P.
, and
Rousseau
,
D. A.
, 1988, “
Dielectric Properties of Liposome Vesicles at the Phase Transition
,”
Phys. Med. Biol.
0031-9155,
33
(
11
), pp.
1309
1324
.
68.
Bryant
,
G.
,
Pope
,
J. M.
, and
Wolfe
,
J.
, 1992, “
Low Hydration Properties of Phospholipid Mixtures
,”
Eur. Biophys. J.
0175-7571,
21
, pp.
223
232
.
69.
Haines
,
T. H.
, 1994, “
Water Transport Across Biological Membranes
,”
FEBS Lett.
0014-5793,
346
, pp.
115
122
.
70.
Papahadjopoulos
,
D.
,
Jacobson
,
K.
,
Nir
,
S.
, and
Isca
,
T.
, 1973, “
Phase Transitions in Phospholipid Vesicles
,”
Biochim. Biophys. Acta
0006-3002,
311
, pp.
330
348
.
71.
Clerc
,
S. G.
, and
Thompson
,
T. E.
, 1995, “
Permeability of Dimyristoyl Phosphatidylcholine/Dipalmitoyl Phosphatidylcholine Bilayer Membranes With Coexisting Gel and Liquid-Crystalline Phases
,”
Biophys. J.
0006-3495,
68
, pp.
2333
2341
.
72.
Carruthers
,
A.
, and
Melchior
,
D. L.
, 1983, “
Studies of the Relationship Between Bilayer Water Permeability and Bilayer Physical State
,”
Biochemistry
0006-2960,
22
, pp.
5797
5807
.
73.
Garrick
,
R. A.
,
Patel
,
B. C.
, and
Chinard
,
F. P.
, 1982, “
Erythrocyte Permeability to Lipophilic Solutes Changes With Temperature
,”
American Journal Physiological-Cell Physiology
,
242
, pp.
C74
C80
.
74.
Caffrey
,
M.
, 1987, “
The Combined and Separate Effects of Low Temperature and Freezing on Membrane Lipid Mesomorphic Phase Behavior: Relevance to Cryobiology
,”
Biochim. Biophys. Acta
0006-3002,
896
, pp.
123
127
.
75.
Biondi
,
A. C.
,
Senisterra
,
G. A.
, and
Disalvo
,
E. A.
, 1992, “
Permeability of Lipid Membranes Revised in Relation to Freeze-Thaw Processes
,”
Cryobiology
0011-2240,
29
, pp.
323
331
.
76.
Koynokova
,
R.
,
Brankov
,
J.
, and
Tenchov
,
B.
, 1997, “
Modulation of Lipid Phase Behavior by Kosmotropic and Chaotropic Solutes
,”
Eur. Biophys. J.
0175-7571,
25
, pp.
261
274
.
77.
Gordon-Kamm
,
W. J.
, and
Steponkus
,
P. L.
, 1984, “
Lamellar-to-HexagonalII Phase Transitions in the Plasma Membrane of Isolated Protoplasts After Freeze-Induced Dehydration
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
81
(
20
), pp.
6373
6377
.
78.
Balasubramanian
,
S. K.
,
Wolkers
,
W. F.
, and
Bischof
,
J. C.
, 2009, “
Membrane Hydration Correlates to Cellular Biophysics During Freezing in Mammalian Cells
,”
Biochim. Biophys. Acta
0006-3002,
1788
(
5
), pp.
945
953
.
79.
Neidert
,
M. R.
,
Devireddy
,
R. V.
,
Tranquillo
,
R. T.
, and
Bischof
,
J. C.
, 2004, “
Cryopreservation of Collagen-Based Tissue Equivalents. II. Improved Freezing in the Presence of Cryoprotective Agents
,”
Tissue Eng.
1076-3279,
10
(
1–2
), pp.
23
32
.
80.
Verkman
,
A. S.
, 2005, “
More Than Just Water Channels: Unexpected Cellular Roles of Aquaporins
,”
J. Cell Sci.
,
118
(
Pt 15
), pp.
3225
3232
. 0021-9533
81.
Edashige
,
K.
,
Yamaji
,
Y.
,
Kleinhans
,
F. W.
, and
Kasai
,
M.
, 2003, “
Artificial Expression of Aquaporin-3 Improves the Survival of Mouse Oocytes After Cryopreservation
,”
Biol. Reprod.
0006-3363,
68
(
1
), pp.
87
94
.
82.
Sugimachi
,
K.
,
Roach
,
K. L.
,
Rhoads
,
D. B.
, and
Tompkins
,
R. G.
, 2006, “
Nonmetabolizable Glucose Compounds Impart Cryotolerance to Primary Rat Hepatocytes
,”
Tissue Eng.
1076-3279,
12
(
3
), pp.
579
588
.
83.
Elliott
,
G. D.
,
Liu
,
X. H.
,
Cusick
,
J. L.
,
Menze
,
M.
,
Vincent
,
J.
,
Witt
,
T.
,
Hand
,
S.
, and
Toner
,
M.
, 2006, “
Trehalose Uptake Through P2X(7) Purinergic Channels Provides Dehydration Protection
,”
Cryobiology
0011-2240,
52
(
1
), pp.
114
127
.
84.
Laroche
,
C.
,
Simonin
,
H.
,
Beney
,
L.
, and
Gervais
,
P.
, 2005, “
Phase Transitions as a Function of Osmotic Pressure in Saccharomyces Cerevisiae Whole Cells, Membrane Extracts and Phospholipid Mixtures
,”
Biochim. Biophys. Acta
0006-3002,
1669
(
1
), pp.
8
16
.
85.
Cameron
,
D. G.
,
Martin
,
A.
, and
Mantsch
,
H. H.
, 1983, “
Membrane Isolation Alters the Gel to Liquid Crystal Transition of Acholeplasma Laidlawii B
,”
Science
0036-8075,
219
(
4581
), pp.
180
182
.
86.
Hase
,
M.
, and
Yoshikawa
,
K.
, 2006, “
Structural Transition of Actin in Cell-Sized Water Droplets With a Phospholipid Membrane
,”
J. Chem. Phys.
0021-9606,
124
, p.
104903
.
87.
Gicquaud
,
C.
, and
Wong
,
P.
, 1994, “
Mechanism of Interaction Between Actin and Membrane Lipids: A Pressure-Tuning Infrared Spectroscopy Study
,”
Biochem. J.
0264-6021,
303
, pp.
769
774
.
88.
Liu
,
L.
,
Chen
,
S.-H.
,
Faraone
,
A.
,
Yen
,
C.-W.
,
Mou
,
C.-Y.
, 2006, “
Quasielastic and Inelastic Neutron Scattering Investigation of Fragile-to-Strong Crossover in Deeply Supercooled Water Confined in Nanoporous Silica Matrices
,”
J. Phys.: Condens. Matter
0953-8984,
18
, pp.
S2261
S2284
.
89.
Le Bihan
,
T.
,
Pelletier
,
D.
,
Tancrede
,
P.
,
Heppell
,
B.
,
Chauvert
,
J. P.
, and
Gicquaud
,
C.
, 2005, “
Effect of the Polar Headgroup of Phospholipids on Their Interaction With Actin
,”
J. Colloid Interface Sci.
0021-9797,
288
, pp.
88
96
.
90.
Bibby
,
K. J.
, and
McCulloch
,
C. A. G.
, 1994, “
Regulation of Cell Volume and [Ca2+]i in Attached Human Fibroblasts Responding to Anisosmotic Buffers
,”
Am. J. Physiol.
0002-9513,
266
(
35
), pp.
C1639
C1649
.
91.
Hallows
,
K. R.
,
Packman
,
C. H.
, and
Knauf
,
P. A.
, 1991, “
Acute Cell Volume Changes in Anisotonic Media Affect F-Actin Content of HL-60 Cells
,”
Am. J. Physiol.
0002-9513,
261
(
30
), pp.
C1154
1161
.
92.
Kleinzeller
,
A.
,
Booz
,
G. W.
,
Mills
,
J. W.
, and
Ziyadeh
,
F. N.
, 1990, “
pCMBS-Induced Swelling of Dogfish (Squalus-Acanthias) Rectal Gland-Cells: Role of the Na+, K+-Atpase and the Cytoskeleton
,”
Biochim. Biophys. Acta
0006-3002,
1025
(
1
), pp.
21
31
.
93.
Mills
,
J. W.
,
Scwiebert
,
E. M.
, and
Stanton
,
B. A.
, 1994, “
Evidence for the Role of Actin-Filaments in Regulating Cell Swelling
,”
J. Exp. Zool.
0022-104X,
268
(
2
), pp.
111
120
.
94.
Ito
,
T.
, and
Yamazaki
,
M.
, 2006, “
The “Le Chatelier’s Principle”-Governed Response of Actin Filaments to Osmotic Stress
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
13572
13581
.
95.
Mazur
,
P.
, 2004, “
Principles of Cryobiology
,”
Life in the Frozen State
,
B. J.
Fuller
,
N.
Lane
, and
E.
Benson
, eds.,
CRC
,
Boca Raton, FL
, pp.
3
66
.
96.
Baust
,
J. M.
,
Vogel
,
M. J.
,
Van Buskirk
,
R.
, and
Baust
,
J. G.
, 2001, “
A Molecular Basis of Cryopreservation Failure and Its Modulation to Improve Cell Survival
,”
Cell Transplant
0963-6897,
10
(
7
), pp.
561
571
.
97.
Fowke
,
K. R.
,
Behnke
,
J.
,
Hanson
,
C.
,
Shea
,
K.
, and
Cosentino
,
L. M.
, 2000, “
Apoptosis: A Method for Evaluating the Cryopreservation of Whole Blood and Peripheral Blood Mononuclear Cells
,”
J. Immunol. Methods
0022-1759,
244
(
1–2
), pp.
139
144
.
98.
Matsushita
,
T.
,
Yagi
,
T.
,
Hardin
,
J. A.
,
Cragun
,
J. D.
,
Crow
,
F. W.
, and
Bergen
,
H. R.
, 2003, “
Apoptotic Cell Death and Function of Cryopreserved Porcine Hepatocytes in a Bioartificial Liver
,”
Cell Transplant
0963-6897,
12
(
2
), pp.
109
121
.
99.
Nyberg
,
S. L.
,
Hardin
,
J. A.
,
Matos
,
L. E.
,
Rivera
,
D. J.
,
Misra
,
S. P.
, and
Gores
,
G. J.
, 2000, “
Cytoprotective Influence of ZVAD-fmk and Glycine on Gel-Entrapped Rat Hepatocytes in a Bioartificial Liver
,”
Surgery
,
127
(
4
), pp.
447
455
. 0039-6060
100.
Sarkar
,
S.
,
Kalia
,
V.
, and
Montelaro
,
R. C.
, 2003, “
Caspase-Mediated Apoptosis and Cell Death of Rhesus Macaque CD4+ T-Cells Due to Cryopreservation of Peripheral Blood Mononuclear Cells Can Be Rescued by Cytokine Treatment After Thawing
,”
Cryobiology
0011-2240,
47
(
1
), pp.
44
58
.
101.
Sasnoor
,
L. M.
,
Kale
,
V. P.
, and
Limaye
,
L. S.
, 2005, “
Prevention of Apoptosis as a Possible Mechanism Behind Improved Cryoprotection of Hematopoietic Cells by Catalase and Trehalose
,”
Transplantation
0041-1337,
80
(
9
), pp.
1251
1260
.
102.
Yagi
,
T.
,
Hardin
,
J. A.
,
Valenzuela
,
Y. M.
,
Miyoshi
,
H.
,
Gores
,
G. J.
, and
Nyberg
,
S. L.
, 2001, “
Caspase Inhibition Reduces Apoptotic Death of Cryopreserved Porcine Hepatocytes
,”
Hepatology (Philadelphia, PA, U. S.)
0270-9139,
33
(
6
), pp.
1432
1440
.
103.
Stroh
,
C.
,
Cassens
,
U.
,
Samraj
,
A. K.
,
Sibrowski
,
W.
,
Schulze-Osthoff
,
K.
,
Los
,
M.
, 2002, “
The Role of Caspases in Cryoinjury: Caspase Inhibition Strongly Improves the Recovery of Cryopreserved Hematopoietic and Other Cells
,”
FASEB J.
0892-6638,
16
(
12
), pp.
1651
1653
.
104.
Liu
,
K.
,
Yang
,
Y.
, and
Mansbridge
,
J.
, 2000, “
Comparison of the Stress Response to Cryopreservation in Monolayer and Three-Dimensional Human Fibroblast Cultures: Stress Proteins, MAP Kinases, and Growth Factor Gene Expression
,”
Tissue Eng.
1076-3279,
6
(
5
), pp.
539
554
.
105.
Abolhassani
,
M.
,
Wertz
,
X.
,
Pooya
,
M.
,
Chaumet-Riffaud
,
P.
,
Guais
,
A.
,
Schwartz
,
L.
, 2008, “
Hyperosmolarity Causes Inflammation Through the Methylation of Protein Phosphatase 2A
,”
Inflamm Res.
1023-3830,
57
(
9
), pp.
419
429
.
106.
Borel Rinkes
,
I. H.
,
Toner
,
M.
,
Sheeha
,
S. J.
,
Tompkins
,
R. G.
, and
Yarmush
,
M. L.
, 1992, “
Long-Term Functional Recovery of Hepatocytes After Cryopreservation in a Three-Dimensional Culture Configuration
,”
Cell Transplant
0963-6897,
1
(
4
), pp.
281
292
.
107.
Huo
,
T. I.
,
Huang
,
Y. H.
, and
Wu
,
J. C.
, 2005, “
Percutaneous Ablation Therapy for Hepatocellular Carcinoma: Current Practice and Future Perspectives
,”
J. Chin. Med. Assoc.
,
68
(
4
), pp.
155
159
. 1726-4901
108.
Ahmed
,
M.
,
Liu
,
Z.
,
Humphries
,
S.
, and
Goldberg
,
S. N.
, 2008, “
Computer Modeling of the Combined Effects of Perfusion, Electrical Conductivity, and Thermal Conductivity on Tissue Heating Patterns in Radiofrequency Tumor Ablation
,”
Int. J. Hyperthermia
0265-6736,
24
(
7
), pp.
577
588
.
109.
Fujikawa
,
S.
, 1981, “
The Effect of Various Cooling Rates on the Membrane Ultrastructure of Frozen Human Erythrocytes and Its Relation to the Extent of Haemolysis After Thawing
,”
J. Cell Sci.
,
49
, pp.
369
382
. 0021-9533
110.
Rubinsky
,
B.
,
Lee
,
C. Y.
,
Bastacky
,
J.
, and
Onik
,
G.
, 1990, “
The Process of Freezing and the Mechanism of Damage During Hepatic Cryosurgery
,”
Cryobiology
0011-2240,
27
(
1
), pp.
85
97
.
111.
Pazhayannur
,
P.
, and
Bischof
,
J. C.
, 1997, “
Measurement and Simulation of Water Transport During Freezing in Mammalian Liver Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
3
), pp.
269
277
.
112.
Ishiguro
,
H.
, and
Horimizu
,
T.
, 2008, “
Three-Dimensional Microscopic Freezing and Thawing Behavior of Biological Tissues Revealed by Real-Time Imaging Using Confocal Laser Scanning Microscopy
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5642
5649
.
113.
Bischof
,
J. C.
, 2000, “
Quantitative Measurement and Prediction of Biophysical Response During Freezing in Tissues
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
257
288
.
114.
Han
,
B.
,
Miller
,
J. D.
, and
Jung
,
J. K.
, 2009, “
Freezing-Induced Fluid-Matrix Interaction in Poroelastic Material
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
2
), p.
021002
.
115.
Venkatasubramanian
,
R. T.
,
Grassl
,
E. D.
,
Barocas
,
V. H.
,
Lafontaine
,
D.
, and
Bischof
,
J. C.
, 2006, “
Effects of Freezing and Cryopreservation on the Mechanical Properties of Arteries
,”
Ann. Biomed. Eng.
0090-6964,
34
(
5
), pp.
823
832
.
116.
Hong
,
J. S.
, and
Rubinsky
,
B.
, 1994, “
Patterns of Ice Formation in Normal and Malignant Breast Tissue
,”
Cryobiology
0011-2240,
31
(
2
), pp.
109
120
.
117.
Bischof
,
J.
,
Christov
,
K.
, and
Rubinsky
,
B.
, 1993, “
A Morphological Study of Cooling Rate Response in Normal and Neoplastic Human Liver Tissue: Cryosurgical Implications
,”
Cryobiology
0011-2240,
30
(
5
), pp.
482
492
.
118.
ASHRAE
, 2002, “
Thermal Properties of Foods
,”
ASHRAE Handbook—Refrigeration
,
M. S.
Owen
, ed.,
ASHRAE
,
New York
.
119.
Rubinsky
,
B.
, and
Cravalho
,
E. G.
, 1984, “
An Analytical Method to Evaluate Cooling Rates During Cryopreservation Protocols for Organs
,”
Cryobiology
0011-2240,
21
(
3
), pp.
303
320
.
120.
Choi
,
J. H.
, and
Bischof
,
J. C.
, 2008, “
A Quantitative Analysis of the Thermal Properties of Porcine Liver With Glycerol at Subzero and Cryogenic Temperatures
,”
Cryobiology
0011-2240,
57
(
2
), pp.
79
83
.
121.
Duck
,
F. A.
, 1990, “
Thermal Properties of Tissue
,”
Physical Properties of Tissue: A Comprehensive Reference Book
,
F.
Duck
, ed.,
Academic
,
New York
.
122.
He
,
X.
, and
Bischof
,
J. C.
, 2003, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
0278-940X,
31
(
5–6
), pp.
355
422
.
123.
Diller
,
K.
, 1992, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Advances in Heat Transfer
, Vol.
22
,
Y. I.
Cho
, ed.,
Academic
,
New York
.
124.
Diller
,
K. R.
,
Valvano
,
J.
, and
Pearce
,
J.
, 1999, “
Bioheat Transfer
,”
Thermal Engineering Handbook
,
F.
Kreith
, ed.,
CRC
,
Boca Raton, FL
, pp.
4
-114–4-
159
.
125.
Bischof
,
J. C.
,
Mahr
,
B.
,
Choi
,
J. H.
,
Behling
,
M.
, and
Mewes
,
D.
, 2007, “
Use of X-ray Tomography to Map Crystalline and Amorphous Phases in Frozen Biomaterials
,”
Ann. Biomed. Eng.
0090-6964,
35
(
2
), pp.
292
304
.
126.
Hey
,
J. M.
, and
MacFarlane
,
D. R.
, 1998, “
Crystallization of Ice in Aqueous Solutions of Glycerol and Dimethyl Sulfoxide 2: Ice Crystal Growth Kinetics
,”
Cryobiology
0011-2240,
37
(
2
), pp.
119
130
.
127.
Yuan
,
S.
, and
Diller
,
K. R.
, 2005, “
An Optical Differential Scanning Calorimeter Cryomicroscope
,”
J. Microsc.
0022-2720,
218
(
Pt 2
), pp.
85
93
.
128.
Han
,
B.
, and
Bischof
,
J. C.
, 2004, “
Thermodynamic Nonequilibrium Phase Change Behavior and Thermal Properties of Biological Solutions for Cryobiology Applications
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
196
203
.
129.
Choi
,
J. H.
, and
Bischof
,
J. C.
, 2008, “
A Quantitative Analysis on the Thermal Properties of Phosphate Buffered Saline With Glycerol at Subzero Temperatures
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
640
649
.
130.
Rubinsky
,
B.
, 2000, “
Cryosurgery
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
157
187
.
131.
Bidault
,
N. P.
,
Hammer
,
B. E.
, and
Hubel
,
A.
, 2000, “
Rapid MR Imaging of Cryoprotectant Permeation in an Engineered Dermal Replacement
,”
Cryobiology
0011-2240,
40
(
1
), pp.
13
26
.
132.
Bidault
,
N. P.
,
Hammer
,
B. E.
, and
Hubel
,
A.
, 2001, “
Water Content in an Engineered Dermal Replacement During Permeation of Me2SO Solutions Using Rapid MR Imaging
,”
Biotechnol. Prog.
8756-7938,
17
(
3
), pp.
530
536
.
133.
Fahy
,
G. M.
,
Wowk
,
B.
,
Wu
,
J.
,
Phan
,
J.
,
Rasch
,
C.
,
Chang
,
A.
, and
Zendejas
,
E.
, 2004, “
Cryopreservation of Organs by Vitrification: Perspectives and Recent Advances
,”
Cryobiology
0011-2240,
48
(
2
), pp.
157
178
.
134.
Acker
,
J. P.
,
Elliott
,
J. A.
, and
McGann
,
L. E.
, 2001, “
Intercellular Ice Propagation: Experimental Evidence for Ice Growth Through Membrane Pores
,”
Biophys. J.
0006-3495,
81
(
3
), pp.
1389
1397
.
135.
Irimia
,
D.
, and
Karlsson
,
J. O.
, 2002, “
Kinetics and Mechanism of Intercellular Ice Propagation in a Micropatterned Tissue Construct
,”
Biophys. J.
0006-3495,
82
(
4
), pp.
1858
1868
.
136.
Balasubramanian
,
S. K.
,
Bischof
,
J. C.
, and
Hubel
,
A.
, 2006, “
Water Transport and IIF Parameters for a Connective Tissue Equivalent
,”
Cryobiology
0011-2240,
52
(
1
), pp.
62
73
.
137.
Balasubramanian
,
S. K.
,
Venkatasubramanian
,
R. T.
,
Menon
,
A.
, and
Bischof
,
J. C.
, 2008, “
Thermal Injury Prediction During Cryoplasty Through In Vitro Characterization of Smooth Muscle Cell Biophysics and Viability
,”
Annu. Rev. Biomed. Eng.
1523-9829,
36
, pp.
86
101
.
138.
Kumar
,
V.
,
Abbas
,
A. K.
,
Fausto
,
N.
,
Robbins
,
S. L.
, and
Cotran
,
R. S.
, 2004, “
Tissue Renewal and Repair: Regeneration, Healing, and Fibrosis
,”
Robbins and Cotran Pathologic Basis of Disease
, 7th ed.,
Saunders
,
Philadelphia
.
139.
Metcalfe
,
A. D.
, and
Ferguson
,
M. W.
, 2007, “
Bioengineering Skin Using Mechanisms of Regeneration and Repair
,”
Biomaterials
0142-9612,
28
(
34
), pp.
5100
5113
.
140.
Vorp
,
D. A.
,
Maul
,
T.
, and
Nieponice
,
A.
, 2005, “
Molecular Aspects of Vascular Tissue Engineering
,”
Front. Biosci.
1093-4715,
10
, pp.
768
789
.
141.
Metcalfe
,
A. D.
, and
Ferguson
,
M. W.
, 2008, “
Skin Stem and Progenitor Cells: Using Regeneration as a Tissue-Engineering Strategy
,”
Cell. Mol. Life Sci.
1420-682X,
65
(
1
), pp.
24
32
.
142.
Gouk
,
S. S.
,
Lim
,
T. M.
,
Teoh
,
S. H.
, and
Sun
,
W. Q.
, 2008, “
Alterations of Human Acellular Tissue Matrix by Gamma Irradiation: Histology, Biomechanical Property, Stability, In Vitro Cell Repopulation, and Remodeling
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
84
(
1
), pp.
205
217
.
143.
Hoffmann
,
N. E.
, and
Bischof
,
J. C.
, 2002, “
The Cryobiology of Cryosurgical Injury
,”
Urology
0090-4295,
60
(
2
), pp.
40
49
.
144.
Dewhirst
,
M. W.
,
Vujaskovic
,
Z.
,
Jones
,
E.
, and
Thrall
,
D.
, 2005, “
Re-Setting the Biologic Rationale for Thermal Therapy
,”
Int. J. Hyperthermia
0265-6736,
21
(
8
), pp.
779
790
.
145.
Ostberg
,
J. R.
, and
Repasky
,
E. A.
, 2006, “
Emerging Evidence Indicates That Physiologically Relevant Thermal Stress Regulates Dendritic Cell Function
,”
Cancer Immunol. Immunother
0340-7004,
55
(
3
), pp.
292
298
.
146.
Dong
,
J.
,
Hubel
,
A.
,
Bischof
,
J. C.
, and
Aksan
,
A.
, 2009, “
Freezing-Induced Phase Separation and Spatial Microheterogeneity in Protein Solutions
,”
J. Phys. Chem. B
1089-5647,
113
(
30
), pp.
10081
10087
.
You do not currently have access to this content.