Grooved structures have been widely studied in particle separation and fluid mixing in microfluidic channel systems. In this brief report, we demonstrate the use of patterning flows produced by two different sorts of grooved surfaces: single slanted groove series (for enrichment patterns) and V-shaped groove series (for focusing patterns), into a microfluidic device to continuously manipulate the flowing particles, including microbeads with 6μm, 10μm, and 20μm in diameter and mouse dendritic cells of comparable sizes to the depth of the channel. The device with grooved channels was developed and fabricated by soft-lithographic techniques. The particle distributions after passing through the single slanted grooves illustrate the size-dependent enrichment profiles. On the other hand, particles passing through the V-shaped grooves show focusing patterns downstream, for the combination effect from both sides of single slanted grooves setup side-by-side. Compared with devices utilizing sheath flows, the focusing patterns generated in this report are unique without introducing additional flow control. The alignment of the concentrated particles is expected to facilitate the visualization of sizing and counting in cell-based devices. On the other hand, the size-dependent patterns of particle distributions have the potential for the application of size-based separation.

1.
Andersson
,
H.
, and
van den Berg
,
A.
, 2003, “
Microfluidic Devices for Cellomics: A Review
,”
Sens. Actuators B
0925-4005,
92
(
3
), pp.
315
325
.
2.
Yi
,
C. Q.
,
Li
,
C. W.
,
Ji
,
S. L.
, and
Yang
,
M. S.
, 2006, “
Microfluidics Technology for Manipulation and Analysis of Biological Cells
,”
Anal. Chim. Acta
0003-2670,
560
(
1–2
), pp.
1
23
.
3.
Dittrich
,
P. S.
,
Tachikawa
,
K.
, and
Manz
,
A.
, 2006, “
Micro Total Analysis Systems. Latest Advancements and Trends
,”
Anal. Chem.
0003-2700,
78
(
12
), pp.
3887
3907
.
4.
Choi
,
S.
,
Song
,
S.
,
Choi
,
C.
, and
Park
,
J. K.
, 2008, “
Sheathless Focusing of Microbeads and Blood Cells Based on Hydrophoresis
,”
Small
1613-6810,
4
(
5
), pp.
634
641
.
5.
Eisert
,
W. G.
, 1981, “
High-Resolution Optics Combined With High Spatial Reproducibility in Flow
,”
Cytometry
0196-4763,
1
(
4
), pp.
254
259
.
6.
Simonnet
,
C.
, and
Groisman
,
A.
, 2006, “
High-Throughput and High-Resolution Flow Cytometry in Molded Microfluidic Devices
,”
Anal. Chem.
0003-2700,
78
(
16
), pp.
5653
5663
.
7.
Simonnet
,
C.
, and
Groisman
,
A.
, 2005, “
Two-Dimensional Hydrodynamic Focusing in a Simple Microfluidic Device
,”
Appl. Phys. Lett.
0003-6951,
87
(
11
), pp.
114104
.
8.
Sundararajan
,
N.
,
Pio
,
M. S.
,
Lee
,
L. P.
, and
Berlin
,
A. A.
, 2004, “
Three-Dimensional Hydrodynamic Focusing in Polydimethylsiloxane (PDMS) Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
13
(
4
), pp.
559
567
.
9.
Gadish
,
N.
, and
Voldman
,
J.
, 2006, “
High-Throughput Positive-Dielectrophoretic Bioparticle Microconcentrator
,”
Anal. Chem.
0003-2700,
78
(
22
), pp.
7870
7876
.
10.
Murthy
,
S. K.
,
Sethu
,
P.
,
Vunjak-Novakovic
,
G.
,
Toner
,
M.
, and
Radisic
,
M.
, 2006, “
Size-Based Microfluidic Enrichment of Neonatal Rat Cardiac Cell Populations
,”
Biomed. Microdevices
1387-2176,
8
(
3
), pp.
231
237
.
11.
Toner
,
M.
, and
Irimia
,
D.
, 2005, “
Blood-on-a-Chip
,”
Annu. Rev. Biomed. Eng.
1523-9829,
7
, pp.
77
103
.
12.
Yang
,
S.
,
Undar
,
A.
, and
Zahn
,
J. D.
, 2006, “
A Microfluidic Device for Continuous, Real Time Blood Plasma Separation
,”
Lab Chip
1473-0197,
6
(
7
), pp.
871
880
.
13.
Pamme
,
N.
, 2007, “
Continuous Flow Separations in Microfluidic Devices
,”
Lab Chip
1473-0197,
7
(
12
), pp.
1644
1659
.
14.
Petersson
,
F.
,
Nilsson
,
A.
,
Holm
,
C.
,
Jonsson
,
H.
, and
Laurell
,
T.
, 2005, “
Continuous Separation of Lipid Particles From Erythrocytes by Means of Laminar Flow and Acoustic Standing Wave Forces
,”
Lab Chip
1473-0197,
5
(
1
), pp.
20
22
.
15.
Huang
,
L. R.
,
Cox
,
E. C.
,
Austin
,
R. H.
, and
Sturm
,
J. C.
, 2004, “
Continuous Particle Separation Through Deterministic Lateral Displacement
,”
Science
0036-8075,
304
(
5673
), pp.
987
990
.
16.
Di Carlo
,
D.
,
Edd
,
J. F.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
, 2008, “
Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing
,”
Anal. Chem.
0003-2700,
80
(
6
), pp.
2204
2211
.
17.
Di Carlo
,
D.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
, 2007, “
Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
(
48
), pp.
18892
18897
.
18.
Rettig
,
J. R.
, and
Folch
,
A.
, 2005, “
Large-Scale Single-Cell Trapping and Imaging Using Microwell Arrays
,”
Anal. Chem.
0003-2700,
77
(
17
), pp.
5628
5634
.
19.
Irimia
,
D.
, and
Toner
,
M.
, 2006, “
Cell Handling Using Microstructured Membranes
,”
Lab Chip
1473-0197,
6
(
3
), pp.
345
352
.
20.
Cho
,
B. S.
,
Schuster
,
T. G.
,
Zhu
,
X. Y.
,
Chang
,
D.
,
Smith
,
G. D.
, and
Takayama
,
S.
, 2003, “
Passively Driven Integrated Microfluidic System for Separation of Motile Sperm
,”
Anal. Chem.
0003-2700,
75
(
7
), pp.
1671
1675
.
21.
Fiedler
,
S.
,
Shirley
,
S. G.
,
Schnelle
,
T.
, and
Fuhr
,
G.
, 1998, “
Dielectrophoretic Sorting of Particles and Cells in a Microsystem
,”
Anal. Chem.
0003-2700,
70
(
9
), pp.
1909
1915
.
22.
Fu
,
A. Y.
,
Chou
,
H. P.
,
Spence
,
C.
,
Arnold
,
F. H.
, and
Quake
,
S. R.
, 2002, “
An Integrated Microfabricated Cell Sorter
,”
Anal. Chem.
0003-2700,
74
(
11
), pp.
2451
2457
.
23.
Hsu
,
C.
,
Di Carlo
,
D.
,
Chen
,
C.
,
Irimia
,
D.
, and
Toner
,
M.
, 2008, “
Microvortex for Focusing, Guiding and Sorting of Particles
,”
Lab Chip
1473-0197,
8
(
12
), pp.
2128
2134
.
24.
Lee
,
H. Y.
, and
Voldman
,
J.
, 2007, “
Optimizing Micromixer Design for Enhancing Dielectrophoretic Microconcentrator Performance
,”
Anal. Chem.
0003-2700,
79
(
5
), pp.
1833
1839
.
25.
Yamada
,
M.
, and
Seki
,
M.
, 2006, “
Microfluidic Particle Sorter Employing Flow Splitting and Recombining
,”
Anal. Chem.
0003-2700,
78
(
4
), pp.
1357
1362
.
26.
Choi
,
S.
, and
Park
,
J. K.
, 2007, “
Continuous Hydrophoretic Separation and Sizing of Microparticles Using Slanted Obstacles in a Microchannel
,”
Lab Chip
1473-0197,
7
(
7
), pp.
890
897
.
27.
Yang
,
S.
,
Undar
,
A.
, and
Zahn
,
J. D.
, 2005, “
Blood Plasma Separation in Microfluidic Channels Using Flow Rate Control
,”
ASAIO J.
1058-2916,
51
(
5
), pp.
585
590
.
28.
Jaggi
,
R. D.
,
Sandoz
,
R.
, and
Effenhauser
,
C. S.
, 2007, “
Microfluidic Depletion of Red Blood Cells From Whole Blood in High-Aspect-Ratio Microchannels
,”
Microfluid. Nanofluid.
1613-4982,
3
(
1
), pp.
47
53
.
29.
Stroock
,
A. D.
,
Dertinger
,
S. K.
,
Whitesides
,
G. M.
, and
Ajdari
,
A.
, 2002, “
Patterning Flows Using Grooved Surfaces
,”
Anal. Chem.
0003-2700,
74
(
20
), pp.
5306
5312
.
30.
Stroock
,
A. D.
,
Dertinger
,
S. K. W.
,
Ajdari
,
A.
,
Mezic
,
I.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
, 2002, “
Chaotic Mixer for Microchannels
,”
Science
0036-8075,
295
(
5555
), pp.
647
651
.
31.
Stroock
,
A. D.
, and
Whitesides
,
G. M.
, 2003, “
Controlling Flows in Microchannels With Patterned Surface Charge and Topography
,”
Acc. Chem. Res.
0001-4842,
36
(
8
), pp.
597
604
.
32.
Yang
,
J. T.
,
Huang
,
K. J.
, and
Lin
,
Y. C.
, 2005, “
Geometric Effects on Fluid Mixing in Passive Grooved Micromixers
,”
Lab Chip
1473-0197,
5
(
10
), pp.
1140
1147
.
33.
Hsu
,
C. H.
, and
Folch
,
A.
, 2006, “
Spatio-Temporally-Complex Concentration Profiles Using a Tunable Chaotic Micromixer
,”
Appl. Phys. Lett.
0003-6951,
89
(
14
), pp.
144102
.
34.
Chen
,
H. H.
, and
Gao
,
D.
, 2008, “
Particle Enrichment Employing Grooved Microfluidic Channels
,”
Appl. Phys. Lett.
0003-6951,
92
(
17
), pp.
173502
.
35.
Duffy
,
D. C.
,
McDonald
,
J. C.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
, 1998, “
Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane)
,”
Anal. Chem.
0003-2700,
70
(
23
), pp.
4974
4984
.
36.
McDonald
,
J. C.
,
Duffy
,
D. C.
,
Anderson
,
J. R.
,
Chiu
,
D. T.
,
Wu
,
H. K.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
, 2000, “
Fabrication of Microfluidic Systems in Poly(Dimethylsiloxane)
,”
Electrophoresis
0173-0835,
21
(
1
), pp.
27
40
.
37.
Ng
,
J. M. K.
,
Gitlin
,
I.
,
Stroock
,
A. D.
, and
Whitesides
,
G. M.
, 2002, “
Components for Integrated Poly(Dimethylsiloxane) Microfluidic Systems
,”
Electrophoresis
0173-0835,
23
(
20
), pp.
3461
3473
.
38.
Qin
,
D.
,
Xia
,
Y. N.
, and
Whitesides
,
G. M.
, 1996, “
Rapid Prototyping of Complex Structures With Feature Sizes Larger than 20 Mu m
,”
Adv. Mater.
0935-9648,
8
(
11
), pp.
917
919
.
39.
Whitesides
,
G. M.
,
Ostuni
,
E.
,
Takayama
,
S.
,
Jiang
,
X. Y.
, and
Ingber
,
D. E.
, 2001, “
Soft Lithography in Biology and Biochemistry
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
335
373
.
40.
Xia
,
Y. N.
, and
Whitesides
,
G. M.
, 1998, “
Soft Lithography
,”
Annu. Rev. Mater. Sci.
0084-6600,
28
, pp.
153
184
.
41.
Shevkoplyas
,
S. S.
,
Yoshida
,
T.
,
Munn
,
L. L.
, and
Bitensky
,
M. W.
, 2005, “
Biomimetic Autoseparation of Leukocytes From Whole Blood in a Microfluidic Device
,”
Anal. Chem.
0003-2700,
77
(
3
), pp.
933
937
.
You do not currently have access to this content.