Gold nanoparticles have been found to greatly enhance the polymerase chain reaction (PCR) specificity and yield in recent studies. However, the underlying mechanism is still unclear, though different hypotheses have already been proposed. In this study, a mass-action based model has been developed to investigate the effect of Au nanoparticles on the two-round PCR results. The great affinity of Au nanoparticles to the single-stranded DNA is taken into consideration. Each nanoparticle is treated as a bioreactor and/or a selector, around which, reaction equations are coupled to simulate the particle effect, and to investigate the key parameters that might influence such an effect. It is assumed that there exists a competing mechanism between the specific and nonspecific bindings, both in the solution and on the particle surface during the reactions. The numerical predictions accord well to the experimental results, and can be used to explain the Au nanoparticles’ effect on the enhancement of the PCR specificity and efficiency.

1.
Li
,
M.
,
Lin
,
Y. C.
,
Wu
,
C. C.
, and
Liu
,
H. S.
, 2005, “
Enhancing the Efficiency of a PCR Using Gold Nanoparticles
,”
Nucleic Acids Res.
0305-1048,
33
(
21
), pp.
e184
.
2.
Li
,
H.
,
Huang
,
J.
,
Lv
,
J.
,
An
,
H.
,
Zhang
,
X.
,
Zhang
,
Z.
,
Fan
,
C.
, and
Hu
,
J.
, 2005, “
Nanoparticle PCR: Nanogold-Assisted PCR With Enhanced Specificity
,”
Angew. Chem., Int. Ed. Engl.
0570-0833,
44
(
32
), pp.
5100
5103
.
3.
Huang
,
J.
,
Wang
,
C.
,
Wang
,
L.
,
Li
,
H.
,
Cao
,
X.
,
Zhang
,
X.
,
Fan
,
C.
, and
Hu
,
J.
, “
Size Effect of Gold Nanoparticles in Nanoparticle PCR
,”
Surf. Rev. Lett.
0218-625X, in press.
4.
Hu
,
M.
, and
Hartland
,
G. V.
, 2003, “
Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time Versus Size
,”
J. Phys. Chem. B
1089-5647,
107
(
5
), p.
1284
.
5.
Ishii
,
K.
, and
Fukui
,
M.
, 2001, “
Optimization of Annealing Temperature to Reduce Bias Caused by a Primer Mismatch in Multitemplate PCR
,”
Appl. Environ. Microbiol.
0099-2240,
67
(
8
), pp.
3753
3755
.
6.
Gevertz
,
J. L.
,
Dunn
,
S. M.
, and
Roth
,
C. M.
, 2005, “
Mathematical Model of Real-Time PCR Kinetics
,”
Biotechnol. Bioeng.
0006-3592,
92
(
3
), pp.
346
355
.
7.
Pienaar
,
E.
,
Theron
,
A.
,
Nelson
,
A.
, and
Viljoen
,
H. J.
, 2006, “
A Quantitative Model of Error Accumulation During PCR Amplification
,”
Comput. Biol. Chem.
1476-9271,
30
(
2
), pp.
102
111
.
8.
Lindahl
,
T.
, and
Nyberg
,
B.
, 1972, “
Rate of Depurination of Native Deoxyribonucleic Acid
,”
Biochemistry
0006-2960,
11
(
19
), pp.
3610
3618
.
9.
Hsu
,
G. W.
,
Ober
,
M.
,
Carell
,
T.
, and
Beese
,
L. S.
, 2004, “
Error-Prone Replication of Oxidatively Damaged DNA by a High-Fidelity DNA Polymerase
,”
Nature (London)
0028-0836,
431
(
7005
), pp.
217
221
.
10.
Lindahl
,
T.
, and
Nyberg
,
B.
, 1974, “
Heat-Induced Deamination of Cytosine Residues in Deoxyribonucleic Acid
,”
Biochemistry
0006-2960,
13
(
16
), pp.
3405
3410
.
11.
Mehra
,
S.
, and
Hu
,
W. S.
, 2005, “
A Kinetic Model of Quantitative Real-Time Polymerase Chain Reaction
,”
Biotechnol. Bioeng.
0006-3592,
91
(
7
), pp.
848
860
.
12.
Demers
,
L. M.
,
Ostblom
,
M.
,
Zhang
,
H.
,
Jang
,
N. H.
,
Liedberg
,
B.
, and
Mirkin
,
C. A.
, 2002, “
Thermal Desorption Behavior and Binding Properties of DNA Bases and Nucleosides on Gold
,”
J. Am. Chem. Soc.
0002-7863,
124
(
38
), pp.
11248
11249
.
13.
Zhang
,
Z. Z.
,
Shen
,
C. C.
,
Wang
,
M. C.
,
Han
,
H.
, and
Cao
,
X. H.
, 2008, “
Aqueous Suspension of Carbon Nanotubes Enhances the Specificity of Long PCR
,”
BioTechniques
0736-6205,
44
(
4
), pp.
537
545
.
14.
Mi
,
L. J.
,
Zhu
,
H. P.
,
Zhang
,
X. D.
,
Hu
,
J.
, and
Fan
,
C. H.
, 2007, “
Mechanism of the Interaction Between Au Nanoparticles and Polymerase in Nanoparticle PCR
,”
Chin. Sci. Bull.
1001-6538,
52
(
17
), pp.
2345
2349
.
15.
Vu
,
B. V.
,
Litvinov
,
D.
, and
Willson
,
R. C.
, 2008, “
Gold Nanoparticle Effects in Polymerase Chain Reaction: Favoring of Smaller Products by Polymerase Adsorption
,”
Anal. Chem.
0003-2700,
80
(
14
), pp.
5462
5467
.
You do not currently have access to this content.