Over the past 25 years, many laboratory based bioreactors have been used to study the cellular response to hemodynamic forces. The vast majority of these studies have focused on the effect of a single isolated hemodynamic force, generally consisting of a wall shear stress (WSS) or a tensile hoop strain (THS). However, investigating the cellular response to a single isolated force does not accurately represent the true in vivo situation, where a number of forces are acting simultaneously. This study used a novel bioreactor to investigate the cellular response of human umbilical vein endothelial cells (HUVECs) exposed to a combination of steady WSS and a range of cyclic THS. HUVECs exposed to a range of cyclic THS (0–12%), over a 12 h testing period, expressed an upregulation of both ICAM-1 and VCAM-1. HUVECs exposed to a steady WSS (0dynes/cm2 and 25dynes/cm2), over a 12 h testing period, also exhibited an ICAM-1 upregulation but a VCAM-1 downregulation, where the greatest level of WSS stimulus resulted in the largest upregulation and downregulation of ICAM-1 and VCAM-1, respectively. A number of HUVEC samples were exposed to a high steady WSS (25dynes/cm2) combined with a range of cyclic THS (0–4%, 0–8%, and 0–12%) for a 12 h testing period. The initial ICAM-1 upregulation, due to the WSS alone, was downregulated with the addition of a cyclic THS. It was observed that the largest THS (0–12%) had the greatest reducing effect on the ICAM-1 upregulation. Similarly, the initial VCAM-1 downregulation, due to the high steady WSS alone, was further downregulated with the addition of a cyclic THS. A similar outcome was observed when HUVEC samples were exposed to a low steady WSS combined with a range of cyclic THS. However, the addition of a THS to the low WSS did not result in an expected ICAM-1 downregulation. In fact, it resulted in a trend of unexpected ICAM-1 upregulation. The unexpected cellular response to the combination of a steady WSS and a cyclic THS demonstrates that such a response could not be determined by simply superimposing the cellular responses exhibited by ECs exposed to a steady WSS and a cyclic THS that were applied in isolation.

1.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
F. R.
, and
Glagov
,
S.
, 1983, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
0009-7330,
53
(
4
), pp.
502
514
.
2.
Gnasso
,
A.
,
Irace
,
C.
,
Carallo
,
C.
,
De Franceschi
,
M. S.
,
Motti
,
C.
,
Mattioli
,
P. L.
, and
Pujia
,
A.
, 1997, “
In Vivo Association Between Low Wall Shear Stress and Plaque in Subjects With Asymmetrical Carotid Atherosclerosis
,”
Stroke
0039-2499,
28
(
5
), pp.
993
998
.
3.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
. 0098-7484
4.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
(
1
), pp.
17
32
.
5.
Tada
,
S.
, and
Tarbell
,
J. M.
, 2005, “
A Computational Study of Flow in a Compliant Carotid Bifurcation-Stress Phase Angle Correlation With Shear Stress
,”
Ann. Biomed. Eng.
0090-6964,
33
(
9
), pp.
1202
1212
.
6.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc., London, Ser. B
0950-1193,
177
(
1046
), pp.
109
159
.
7.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
0009-7330,
66
(
4
), pp.
1045
1066
.
8.
Motomiya
,
M.
, and
Karino
,
T.
, 1984, “
Flow Patterns in the Human Carotid Artery Bifurcation
,”
Stroke
0039-2499,
15
(
1
), pp.
50
56
.
9.
Fry
,
D. L.
, 1969, “
Certain Histological and Chemical Responses of the Vascular Interface to Acutely Induced Mechanical Stress in the Aorta of the Dog
,”
Circ. Res.
0009-7330,
24
(
1
), pp.
93
108
.
10.
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
, 1981, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
J. Biomech. Eng.
0148-0731,
103
(
3
), pp.
177
185
.
11.
Dai
,
G.
,
Kaazempur-Mofrad
,
M. R.
,
Natarajan
,
S.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Blackman
,
B. R.
,
Kamm
,
R. D.
,
García-Cardeña
,
G.
, and
Gimbrone
,
M. A.
, 2004, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived From Atherosclerosis-Susceptible and Resistant Regions of Human Vasculature
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
41
), pp.
14871
14876
.
12.
Barakat
,
A.
, and
Lieu
,
D.
, 2003, “
Differential Responsiveness of Vascular Endothelial Cells to Different Types of Fluid Mechanical Shear Stress
,”
Cell Biochem. Biophys.
1085-9195,
38
(
3
), pp.
323
343
.
13.
Chiu
,
J. J.
,
Lee
,
P. L.
,
Chen
,
C. N.
,
Lee
,
C. I.
,
Chang
,
S. F.
,
Chen
,
L. J.
,
Lien
,
S. C.
,
Ko
,
Y. C.
,
Usami
,
S.
, and
Chien
,
S.
, 2004, “
Shear Stress Increases ICAM-1 and Decreases VCAM-1 and E-Selectin Expressions Induced By Tumor Necrosis Factor-α
in Endothelial Cells,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
24
(
1
), pp.
73
79
.
14.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
3
), pp.
293
302
.
15.
Topper
,
J. N.
, and
Gimbrone
,
M. A.
, Jr.
, 1999, “
Blood Flow and Vascular Gene Expression: Fluid Shear Stress as a Modulator of Endothelial Phenotype
,”
Mol. Med. Today
1357-4310,
5
(
1
), pp.
40
46
.
16.
Davies
,
P. F.
, 1995, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
0031-9333,
75
(
3
), pp.
519
560
.
17.
Chien
,
S.
, 2003, “
Molecular and Mechanical Bases of Focal Lipid Accumulation in Arterial Wall
,”
Prog. Biophys. Mol. Biol.
0079-6107,
83
(
2
), pp.
131
151
.
18.
Chappell
,
D. C.
,
Varner
,
S. E.
,
Nerem
,
R. M.
,
Medford
,
R. M.
, and
Alexander
,
R. W.
, 1998, “
Oscillatory Shear Stress Stimulates Adhesion Molecule Expression in Cultured Human Endothelium
,”
Circ. Res.
0009-7330,
82
(
5
), pp.
532
539
.
19.
Nerem
,
R. M.
, 1992, “
Vascular Fluid Mechanics, The Arterial Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
3
), pp.
274
282
.
20.
Glass
,
C. K.
, and
Witztum
,
J. L.
, 2001, “
Atherosclerosis. The Road Ahead
,”
Cell
0092-8674,
104
(
4
), pp.
503
516
.
21.
Blackman
,
B. R.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
, 2002, “
A New In Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
397
407
.
22.
Bussolari
,
S. R.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1982, “
Apparatus for Subjecting Living Cells to Fluid Shear Stress
,”
Rev. Sci. Instrum.
0034-6748,
53
(
12
), pp.
1851
1854
.
23.
Sato
,
M.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
, 1996, “
Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
461
467
.
24.
Blackman
,
B. R.
,
Barbee
,
K. A.
, and
Thibault
,
L. E.
, 2000, “
In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
363
372
.
25.
Kanda
,
K.
, and
Matsuda
,
T.
, 1993, “
Behavior of Arterial Wall Cells Cultured on Periodically Stretched Substrates
,”
Cell Transplant
0963-6897,
2
(
6
), pp.
475
484
.
26.
Wang
,
H.
,
Ip
,
W.
,
Boissy
,
R.
, and
Grood
,
E. S.
, 1995, “
Cell Orientation Response to Cyclically Deformed Substrates: Experimental Validation of a Cell Model
,”
J. Biomech.
0021-9290,
28
(
12
), pp.
1543
1552
.
27.
Buck
,
R. C.
, 1980, “
Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum
,”
Exp. Cell Res.
0014-4827,
127
(
2
), pp.
470
474
.
28.
Takemasa
,
T.
,
Yamaguchi
,
T.
,
Yamamoto
,
Y.
,
Sugimoto
,
K.
, and
Yamashita
,
K.
, 1998, “
Oblique Alignment of Stress Fibers in Cells Reduces the Mechanical Stress in Cyclically Deforming Fields
,”
Eur. J. Cell Biol.
0171-9335,
77
(
2
), pp.
91
99
.
29.
Neidlinger-Wilke
,
C.
,
Grood
,
E. S.
,
Wang
,
J.-C.
,
Brand
,
R. A.
, and
Claes
,
L.
, 2001, “
Cell Alignment is Induced by Cyclic Changes in Cell Length: Studies of Cells Grown in Cyclically Stretched Substrates
,”
J. Orthop. Res.
0736-0266,
19
(
2
), pp.
286
293
.
30.
Shirinsky
,
V. P.
,
Yamada
,
T.
, and
Sokabe
,
M.
, 1998, “
Involvement of SA Channels in Orienting Response of Cultured Endothelial Cells to Cyclic Stretch
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
274
(
5
), pp.
H1532
H1538
.
31.
Shirinsky
,
V. P.
,
Antonov
,
A. S.
,
Birukov
,
K. G.
,
Sobolevsky
,
A. V.
,
Romanov
,
Y. A.
,
Kabaeva
,
N. V.
,
Antonova
,
G. N.
, and
Smirnov
,
V. N.
, 1989, “
Mechano-Chemical Control of Human Endothelium Orientation and Size
,”
J. Cell Biol.
0021-9525,
109
(
1
), pp.
331
339
.
32.
Wang
,
J. H.
,
Goldschmidt-Clermont
,
P.
, and
Yin
,
F. C.
, 2000, “
Contractility Affects Stress Fiber Remodeling and Reorientation of Endothelial Cells Subjected to Cyclic Mechanical Stretching
,”
Ann. Biomed. Eng.
0090-6964,
28
(
10
), pp.
1165
1171
.
33.
Wang
,
J. H.
,
Goldschmidt-Clermont
,
P.
,
Wille
,
J.
, and
Yin
,
F. C.
, 2001, “
Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching
,”
J. Biomech.
0021-9290,
34
(
12
), pp.
1563
1572
.
34.
Sipkema
,
P.
,
van der Linden
,
P. J.
,
Westerhof
,
N.
, and
Yin
,
F. C.
, 2003, “
Effect of Cyclic Axial Stretch of Rat Arteries on Endothelial Cytoskeletal Morphology and Vascular Reactivity
,”
J. Biomech.
0021-9290,
36
(
5
), pp.
653
659
.
35.
Moretti
,
M.
,
Prina-Mello
,
A.
,
Reid
,
A. J.
,
Barron
,
V.
, and
Prendergast
,
P. J.
, 2004, “
Endothelial Cell Alignment on Cyclically-Stretched Silicone Surfaces
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
15
(
10
), pp.
1159
1164
.
36.
Clark
,
C. B.
,
Burkholder
,
T. J.
, and
Frangos
,
J. A.
, 2001, “
Uniaxial Strain System to Investigate Strain Rate Regulation In Vitro
,”
Rev. Sci. Instrum.
0034-6748,
72
(
5
), pp.
2415
2422
.
37.
Dartsch
,
P. C.
, and
Betz
,
E.
, 1989, “
Response of Cultured Endothelial Cells to Mechanical Stimulation
,”
Basic Res. Cardiol.
0300-8428,
84
(
3
), pp.
268
281
.
38.
Wang
,
J. H.
,
Yang
,
G.
,
Li
,
Z.
, and
Shen
,
W.
, 2004, “
Fibroblast Responses to Cyclic Mechanical Stretching Depend on Cell Orientation to the Stretching Direction
,”
J. Biomech.
0021-9290,
37
(
4
), pp.
573
576
.
39.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
, Jr.
,
Burki
,
E.
,
Meister
,
J. J.
, and
Brunner
,
H. R.
, 1995, “
Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
15
(
10
), pp.
1781
1786
.
40.
Qiu
,
Y.
, and
Tarbell
,
J. M.
, 2000, “
Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production
,”
J. Vasc. Res.
1018-1172,
37
(
3
), pp.
147
157
.
41.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, and
Meister
,
J. J.
, 1997, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
777
786
.
42.
Zhao
,
S. Z.
,
Ariff
,
B.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
, and
Xu
,
X. Y.
, 2002, “
Inter-Individual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1367
1377
.
43.
Golledge
,
J.
,
Turner
,
R. J.
,
Harley
,
S. L.
,
Springall
,
D. R.
, and
Powell
,
J. T.
, 1997, “
Circumferential Deformation and Shear Stress Induce Differential Responses in Saphenous Vein Endothelium Exposed to Arterial Flow
,”
J. Clin. Invest.
0021-9738,
99
(
11
), pp.
2719
2726
.
44.
Malinauskas
,
R. A.
,
Herrmann
,
R. A.
, and
Truskey
,
G. A.
, 1995, “
The Distribution of Intimal White Blood Cells in the Normal Rabbit Aorta
,”
Atherosclerosis (Dallas)
,
115
(
2
), pp.
147
163
. 0021-9150
45.
Wang
,
D. L.
,
Tang
,
C. C.
,
Wung
,
B. S.
,
Chen
,
H. H.
,
Hung
,
M. S.
, and
Wang
,
J. J.
, 1993, “
Cyclical Strain Increases Endothelin-1 Secretion and Gene Expression in Human Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
0006-291X,
195
(
2
), pp.
1050
1056
.
46.
Breen
,
L. T.
,
McHugh
,
P. E.
,
McCormack
,
B. A.
,
Muir
,
G.
,
Quinlan
,
N. J.
,
Heraty
,
K. B.
, and
Murphy
,
B. P.
, 2006, “
Development of a Novel Bioreactor to Apply Shear Stress and Tensile Strain Simultaneously to Cell Monolayers
,”
Rev. Sci. Instrum.
0034-6748,
77
, p.
104301
.
47.
Nagel
,
T.
,
Resnick
,
N.
,
Atkinson
,
W. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1994, “
Shear Stress Selectively Upregulates Intercellular Adhesion Molecule-1 Expression in Cultured Human Vascular Endothelial Cells
,”
J. Clin. Invest.
0021-9738,
94
(
2
), pp.
885
891
.
48.
Morigi
,
M.
,
Zoja
,
C.
,
Figliuzzi
,
M.
,
Foppolo
,
M.
,
Micheletti
,
G.
,
Bontempelli
,
M.
,
Saronni
,
M.
,
Remuzzi
,
G.
, and
Remuzzi
,
A.
, 1995, “
Fluid Shear Stress Modulates Surface Expression of Adhesion Molecules by Endothelial Cells
,”
Blood
0006-4971,
85
(
7
), pp.
1696
1703
.
49.
Shen
,
Y.
,
Rattan
,
V.
,
Sultana
,
C.
, and
Kalra
,
V. K.
, 1996, “
Cigarette Smoke Condensate-Induced Adhesion Molecule Expression and Transendothelial Migration of Monocytes
,”
Am. J. Physiol.
0002-9513,
270
(
5
), pp.
H1624
H1633
.
50.
Hansen
,
F.
,
Mangell
,
P.
,
Sonesson
,
B.
, and
Lanne
,
T.
, 1995, “
Diameter and Compliance in the Human Common Carotid Artery—Variations With Age and Sex
,”
Ultrasound Med. Biol.
0301-5629,
21
(
1
), pp.
1
9
.
51.
Yun
,
J. K.
,
Anderson
,
J. M.
, and
Ziats
,
N. P.
, 1999, “
Cyclic-Strain-Induced Endothelial Cell Expression of Adhesion Molecules and Their Roles in Monocyte-Endothelial Interaction
,”
J. Biomed. Mater. Res.
0021-9304,
44
(
1
), pp.
87
97
.
52.
Cheng
,
J. J.
,
Wung
,
B. S.
,
Chao
,
Y. J.
, and
Wang
,
D. L.
, 1996, “
Cyclic Strain Enhances Adhesion of Monocytes to Endothelial Cells by Increasing Intercellular Adhesion Molecule-1 Expression
,”
Hypertension
0194-911X,
28
(
3
), pp.
386
391
.
53.
Kim
,
I.
,
Moon
,
S. O.
,
Park
,
S. K.
,
Chae
,
S. W.
, and
Koh
,
G. Y.
, 2001, “
Angiopoietin-1 Reduces VEGF-Stimulated Leukocyte Adhesion to Endothelial Cells by Reducing ICAM-1, VCAM-1, and E-Selectin Expression
,”
Circ. Res.
0009-7330,
89
(
6
), pp.
477
479
.
54.
Tsao
,
P. S.
,
Lewis
,
N. P.
,
Alpert
,
S.
, and
Cook
,
J. P.
, 1995, “
Exposure to Shear Stress Alters Endothelial Adhesiveness. Role of Nitric Oxide
,”
Circulation
0009-7322,
92
(
12
), pp.
3513
3519
.
55.
Ali
,
M. H.
,
Pearlstein
,
D. P.
,
Mathieu
,
C. E.
, and
Schumacker
,
P. T.
, 2004, “
Mitochondrial Requirement for Endothelial Responses to Cyclic Strain: Implications for Mechanotransduction
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
1040-0605,
287
(
3
), pp.
L486
L496
.
56.
Chiu
,
J. J.
,
Wung
,
B. S.
,
Shyy
,
J. Y.
,
Hsieh
,
H. J.
, and
Wang
,
D. L.
, 1997, “
Reactive Oxygen Species Are Involved in Shear Stress-Induced Intercellular Adhesion Molecule-1 Expression in Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
(
12
), pp.
3570
3577
.
57.
Frijns
,
C. J.
, and
Kappelle
,
L. J.
, 2002, “
Inflammatory Cell Adhesion Molecules in Ischemic Cerebrovascular Disease
,”
Stroke
0039-2499,
33
(
8
), pp.
2115
2122
.
58.
Ohtsuka
,
A.
,
Ando
,
J.
,
Korenaga
,
R.
,
Kamiya
,
A.
,
Toyama-Sorimachi
,
N.
, and
Miyasaka
,
M.
, 1993, “
The Effect of Flow on the Expression of Vascular Adhesion Molecule-1 by Cultured Mouse Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
0006-291X,
193
(
1
), pp.
303
310
.
You do not currently have access to this content.