Understanding the mechanisms of tissue injury in hydrocephalus is important to shed light on the pathophysiology of this neurostructural disorder. To date, most of the finite element models created to study hydrocephalus have been two-dimensional (2D). This may not be adequate as the geometry of the cerebral ventricles is unique. In this study, a three-dimensional (3D) finite element model of the cerebral ventricles during hydrocephalus is presented. Results from this model show that during hydrocephalus, the periventricular regions experience the highest stress, and stress magnitude is approximately 80 times higher than the cerebral mantle. This suggests that functional deficits observed in hydrocephalic patients could therefore be more related to the damage to periventricular white matter. In addition, the stress field simulated in the tissues based on the 3D model was found to be approximately four times lower than on the 2D model.

1.
Page
,
L. K.
, 1985, “
Cerebrospinal Fluid and Extracellular Fluid: Their Relationship to Pressure and Duration of Canine Hydrocephalus
,”
Childs Nerv. Syst.
0256-7040,
1
, pp.
12
17
.
2.
Del Bigio
,
M. R.
, 1993, “
Neuropathological Changes Caused by Hydrocephalus
,”
Acta Neuropathol. (Berl)
0001-6322,
85
, pp.
573
585
.
3.
Rubin
,
R. C.
,
Hochwald
,
G. M.
,
Tiell
,
M.
,
Mizutani
,
H.
, and
Ghatak
,
N.
, 1976, “
Hydrocephalus: I. Histological and Ultrastructural Changes in the Pre-Shunted Cortical Mantle
,”
Surg. Neurol.
0090-3019,
5
, pp.
109
113
.
4.
Rubin
,
R. C.
,
Hochwald
,
G. M.
,
Tiell
,
M.
, and
Liwniez
,
B. H.
, 1976, “
Hydrocephalus: II. Cell Number and Size, and Myelin Content of the Preshunted Cerebral Cortical Mantle
,”
Surg. Neurol.
0090-3019,
5
, pp.
115
118
.
5.
Rubin
,
R. C.
,
Hochwald
,
G. M.
,
Tiell
,
M.
,
Epstein
,
F.
,
Ghatak
,
N.
, and
Wisniewski
,
H.
, 1976, “
Hydrocephalus: III. Reconstitution of the Cerebral Cortical Mantle Following Ventricular Shunting
,”
Surg. Neurol.
0090-3019,
5
, pp.
179
183
.
6.
Nagashima
,
T.
,
Tamaki
,
N.
,
Matsumoto
,
S.
,
Horwitz
,
B.
, and
Seguchi
,
Y.
, 1987, “
Biomechanics of Hydrocephalus: A New Theoretical Model
,”
Neurosurgery
0148-396X,
21
, pp.
898
904
.
7.
Peña
,
A.
,
Bolton
,
M. D.
,
Whitehouse
,
H.
, and
Pickard
,
J. D.
, 1999, “
Effects of Brain Ventricular Shape on Periventricular Biomechanics: A Finite-Element Analysis
,”
Neurosurgery
0148-396X,
45
(
1
), pp.
107
118
.
8.
Taylor
,
Z.
, and
Miller
,
K.
, 2004, “
Reassessment of Brain Elasticity for Analysis of Biomechanism of Hydrocephalus
,”
J. Biomech.
0021-9290,
37
, pp.
1263
1269
.
9.
Dutta-Roy
,
T.
,
Wittek
,
A.
, and
Miller
,
K.
, 2008, “
Biomechanical Modelling of Normal Pressure Hydrocephalus
,”
J. Biomech.
0021-9290,
41
(
10
), pp.
2263
2271
.
10.
Summers
,
D.
, 2003, “
Harvard Whole Brain Atlas: www.med.harvard.edu/AANLIB/home.html
,”
J. Neurol., Neurosurg. Psychiatry
0022-3050,
74
, p.
288
.
11.
Cheng
,
S.
, and
Bilston
,
L. E.
, 2007, “
Unconfined Compression of White Matter
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
117
124
.
12.
Ji
,
S.
,
Zhu
,
Q.
,
Dougherty
,
L.
, and
Margulies
,
S.
, 2004, “
In Vivo Measurements of Human Brain Displacement
,”
Stapp Car Crash Journal
,
48
, pp.
527
539
.
13.
Lunn
,
K. E.
,
Paulsen
,
K. D.
,
Liu
,
F.
,
Kennedy
,
F. E.
,
Hartov
,
A.
, and
Roberts
,
D. W.
, 2006, “
Data-Guided Brain Deformation Modeling: Evaluation of a 3-D Adjoint Inversion Method in Porcine Studies
,”
IEEE Trans. Biomed. Eng.
0018-9294,
53
(
10
), pp.
1893
1900
.
14.
Hoff
,
J.
, and
Barber
,
R.
, 1974, “
Transcerebral Mantle Pressure in Normal Pressure Hydrocephalus
,”
Arch. Neurol.
0003-9942,
31
, pp.
101
105
.
15.
Weller
,
R. O.
, and
Wisniewski
,
H.
, 1969, “
Histological and Ultrastructural Changes in Experimental Hydrocephalus in Adult Rabbits
,”
Brain
0006-8950,
92
, pp.
819
828
.
16.
Milhorat
,
T. H.
,
Mosher
,
M. B.
,
Hammock
,
M. K.
, and
Murphy
,
C. F.
, 1970, “
Evidence for Choroid Plexus Absorption in Hydrocephalus
,”
N. Engl. J. Med.
0028-4793,
283
(
6
), pp.
286
289
.
17.
McAllister
,
J. P.
,
Maugans
,
T. A.
,
Shah
,
M. V.
, and
Truex
,
R. C.
, 1985, “
Neuronal Effects of Experimentally Induced Hydrocephalus in Newborn Rabbits
,”
J. Neurosurg.
0022-3085,
63
, pp.
776
783
.
18.
Assaf
,
Y.
,
Sen-Sira
,
L.
,
Constantini
,
S.
,
Chang
,
L. C.
, and
Beni-Adani
,
L.
, 2006, “
Diffusion Tensor Imaging in Hydrocephalus: Initial Experience
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
, pp.
1717
1724
.
19.
Milhorat
,
T.
,
Clark
,
R. G.
,
Hammock
,
M. K.
, and
McGrath
,
P. P.
, 1970, “
Structural, Ultrastructural, and Peameability Changes in the Ependyma and Surrounding Brain Favoring Equilibration in Progressive Hydrocephalus
,”
Arch. Neurol.
0003-9942,
22
, pp.
397
406
.
20.
Naidich
,
T. P.
,
Epstein
,
F.
,
Lin
,
J. P.
,
Kricheff
,
I.
, and
Hochwald
,
G. M.
, 1976, “
Evaluation of Pediatric Hydrocephalus by Computed Tomography
,”
Radiology
0033-8419,
119
(
2
), pp.
337
345
.
21.
Bilston
,
L. E.
, 2002, “
The Effect of Perfusion on Soft Tissue Mechanical Properties: A Computational Model
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
(
4
), pp.
283
290
.
22.
Foltz
,
E. L.
, and
Aine
,
C.
, 1981, “
Diagnosis of Hydrocephalus by CSF Pulse-Wave Analysis: A Clinical Study
,”
Surg. Neurol.
0090-3019,
15
(
4
), pp.
283
293
.
23.
Cheng
,
S.
,
Jacobson
,
E.
, and
Bilston
,
L. E.
, 2007, “
Models of the Pulsatile Hydrodynamics of Cerebrospinal Fluid Flow in the Normal and Abnormal Intracranial System
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
10
(
2
), pp.
151
157
.
You do not currently have access to this content.