We report an image segmentation and registration method for studying joint morphology and kinematics from in vivo magnetic resonance imaging (MRI) scans and its application to the analysis of foot and ankle joint motion. Using an MRI-compatible positioning device, a foot was scanned in a single neutral and seven other positions ranging from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. A segmentation method combining graph cuts and level set was developed. In the subsequent registration step, a separate rigid body transformation for each bone was obtained by registering the neutral position dataset to each of the other ones, which produced an accurate description of the motion between them. The segmentation algorithm allowed a user to interactively delineate 14 foot bones in the neutral position volume in less than 30 min total (user and computer processing unit [CPU]) time. Registration to the seven other positions took approximately 10 additional minutes of user time and 5.25 h of CPU time. For validation, our results were compared with those obtained from 3DViewnix, a semiautomatic segmentation program. We achieved excellent agreement, with volume overlap ratios greater than 88% for all bones excluding the intermediate cuneiform and the lesser metatarsals. For the registration of the neutral scan to the seven other positions, the average overlap ratio is 94.25%, while the minimum overlap ratio is 89.49% for the tibia between the neutral position and position 1, which might be due to different fields of view (FOV). To process a single foot in eight positions, our tool requires only minimal user interaction time (less than 30 min total), a level of improvement that has the potential to make joint motion analysis from MRI practical in research and clinical applications.

References

1.
Lundberg
,
A.
, 1989,
“Kinematics of the Ankle and Foot. In Vivo Roentgen Stereophotogrammetry,”
Acta Orthop. Scand. Suppl.
,
233
, pp.
1
24
.
2.
Van Langelaan
,
E. J.
, 1983,
“A Kinematic Analysis of the Tarsal Joints, an X-Ray Photogrammetric Study,”
Acta Orthop. Scand. Suppl.
,
204
, pp.
1
269
.
3.
Siegler
,
S.
,
Udupa
,
J. K.
,
Ringleb
,
S. I.
,
Imhauser
,
C. W.
,
Hirsch
,
B. E.
,
Odhner
,
D.
,
Saha
,
P. K.
,
Okereke
,
E.
, and
Roach
,
N.
, 2005,
“Mechanics of the Ankle and Subtalar Joints Revealed through a 3D Quasi-Static Stress MRI Technique,”
J. Biomech.
,
38
(
3
), pp.
567
78
.
4.
Khazzam
,
M.
,
Long
,
J. T.
,
Marks
,
R. M.
, and
Harris
,
G. F.
, 2007,
“Kinematic Changes of the Foot and Ankle in Patients with Systemic Rheumatoid Arthritis and Forefoot Deformity,”
J. Orthop. Res.
,
25
(
3
), pp.
319
29
.
5.
Lundgren
,
P.
,
Nester
,
C.
,
Liu
,
A.
,
Arndt
,
A.
,
Jones
,
R.
,
Stacoff
,
A.
,
Wolf
,
P.
, and
Lundberg
,
A.
, 2008,
“Invasive in Vivo Measurement of Rear-, Mid- and Forefoot Motion During Walking,”
Gait Posture
,
28
(
1
), pp.
93
100
.
6.
Yamaguchi
,
S.
,
Sasho
,
T.
,
Kato
,
H.
,
Kuroyanagi
,
Y.
, and
Banks
,
S. A.
, 2009,
“Ankle and Subtalar Kinematics During Dorsiflexion-Plantarflexion Activities,”
Foot Ankle Int.
,
30
(
4
), pp.
361
6
.
7.
De Asla
,
R. J.
,
Wan
,
L.
,
Rubash
,
H. E.
, and
Li
,
G.
, 2006,
“Six Dof in Vivo Kinematics of the Ankle Joint Complex: Application of a Combined Dual-Orthogonal Fluoroscopic and Magnetic Resonance Imaging Technique,”
J. Orthop. Res.
,
24
(
5
), pp.
1019
27
.
8.
Li
,
G.
,
Wan
,
L.
, and
Kozanek
,
M.
, 2008,
“Determination of Real-Time in-Vivo Cartilage Contact Deformation in the Ankle Joint,”
J. Biomech.
,
41
(
1
), pp.
128
36
.
9.
Reinschmidt
,
C.
,
Van Den Bogert
,
A.
,
Nigg
,
B.
,
Lundberg
,
A.
, and
Murphy
,
N.
, 1997,
“Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running,”
J. Biomech.
,
30
(
7
), pp.
729
32
.
10.
Udupa
,
J.
,
Hirsch
,
B.
,
Hillstrom
,
H.
,
Bauer
,
G.
, and
Kneeland
,
J.
, 1998,
“Analysis of in Vivo 3-D Internal Kinematics of the Joints of the Foot,”
IEEE Trans. Biomed. Eng.
,
45
(
11
), pp.
1387
96
.
11.
Ledoux
,
W. R.
,
Rohr
,
E. S.
,
Ching
,
R. P.
, and
Sangeorzan
,
B. J.
, 2006,
“Effect of Foot Shape on the Three-Dimensional Position of Foot Bones,”
J. Orthop. Res.
,
24
(
12
), pp.
2176
86
.
12.
Saha
,
P.
,
Udupa
,
J.
,
Falcao
,
A.
,
Hirsch
,
B.
, and
Siegler
,
S.
, 2004,
“Iso-Shaping Rigid Bodies for Estimating Their Motion from Image Sequences,”
IEEE Trans. Med. Imaging
,
23
(
1
), pp.
63
72
.
13.
West
,
J.
,
Fitzpatrick
,
J.
,
Wang
,
M.
,
Dawant
,
B.
,
Maurer
,
C. J.
,
Kessler
,
R.
, and
Maciunas
,
R.
, 1999,
“Retrospective Intermodality Registration Techniques for Images of the Head: Surface-Based Versus Volume-Based,”
IEEE Trans. Med. Imaging
,
18
(
2
), pp.
144
50
.
14.
Boykov
,
Y.
,
Lee
,
V. S.
,
Rusinek
,
H.
, and
Bansal
,
R.
, 2001,
“Segmentation of Dynamic N-D Data Sets Via Graph Cuts Using Markov Models,” Medical Image Computing and Computer-Assisted Intervention (MICCAI)
,
LNCS
2208
, pp.
1058
1066
.
15.
Osher
,
S.
and
Fedkiw
,
R.
, 2003,
“Level Set Methods and Dynamic Implicit Surfaces,”
Applied Mathematical Sciences
,
Springer
,
New York.
16.
Sethian
,
J. A.
, 1999,
“Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science,”
Cambridge Monograph on Applied and Computational Mathematics
,
Cambridge University Press
,
Cambridge
.
17.
Boykov
,
Y.
, and
Kolmogorov
,
V.
, 2004,
“An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,”
IEEE Trans. Pattern Analysis Machine Intelligence
,
26
(
9
), pp.
1124
1137
.
18.
Boykov
,
Y.
, and
Jolly
,
M.-P.
, 2001, eds.,
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images
,
Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, July 7–14, 2001, IEEE
, Vol.
I
, pp.
105
112
.
19.
Boykov
,
Y.
, and
Kolmogorov
,
V.
, eds., 2003,
Computing Geodesics and Minimal Surfaces Via Graph Cuts
,
Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, Oct. 13–16, 2003, IEEE
, Vol.
I
, pp.
26
33
.
20.
Hu
,
Y.
, and
Haynor
,
D. R.
, 2004,
“Multirigid Registration of Mr and Ct Images of the Cervical Spine,”
Proc. SPIE
,
5370
, pp.
1527
1538
.
21.
Viola
,
P.
, and
Wells
,
W. M.
, 1997,
“Alignment by Maximization of Mutual Information,”
Int. J. Comp. Vision
,
24
(
2
), pp.
137
154
.
22.
Unser
,
M.
, 1999,
“Splines: A Perfect Fit for Signal and Image Processing,”
IEEE Signal Process. Mag.
,
16
(
6
), pp.
22
38
.
23.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
New York.
24.
Holden
,
M.
,
Hill
,
D. L. G.
,
Denton
,
E. R. E.
,
Jarosz
,
J. M.
,
Cox
,
T. C. S.
,
Rohlfing
,
T.
,
Goodey
,
J.
, and
Hawkes
,
D. J.
, 2000,
“Voxel Similarity Measures for 3-D Serial Mr Brain Image Registration,”
IEEE Trans. Med. Imaging
,
19
(
2
), pp.
94
102
.
25.
Kinzel
,
G.
,
Hall
,
A. J.
, and
Hillberry
,
B.
, 1972,
“Measurement of the Total Motion between Two Body Segments. I. Analytical Development,”
J. Biomech.
,
5
(
1
), pp.
93
105
.
26.
Kinzel
,
G.
,
Hillberry
,
B.
,
Hall
,
A. J.
,
Van Sickle
,
D.
, and
Harvey
,
W.
, 1972,
“Measurement of the Total Motion between Two Body Segments. Ii. Description of Application,”
J. Biomech.
,
5
(
3
), pp.
283
293
.
27.
Ying
,
N.
, and
Kim
,
W.
, 2002,
“Use of Dual Euler Angles to Quantify the Three-Dimensional Joint Motion and Its Application to the Ankle Joint Complex,”
J. Biomech.
,
35
(
12
), pp.
1647
1657
.
28.
Manter
,
J. T.
, 1941,
“Movements of the Subtalar and Transverse Tarsal Joints,”
Anatom. Rec.
,
80
(
4
), pp.
397
410
.
29.
Elftman
,
H.
, 1960,
“The Transverse Tarsal Joint and Its Control,”
Clin. Orthop.
,
16
, pp.
41
46
.
30.
Whittaker
,
E. C.
,
Aubin
,
P. M.
, and
Ledoux
,
W. R.
, 2011,
“Foot Bone Kinematics as Measured in a Cadaveric Robotic Gait Simulator,”
Gait Posture
33
(
4
), pp.
645
650
.
31.
Beimers
,
L. M.
,
Tuijthof
,
G. J.
,
Blankevoort
,
L.
,
Jonges
,
R.
,
Maas
,
M.
, and
Van Dijk
,
C. N.
, 2008,
“In-Vivo Range of Motion of the Subtalar Joint Using Computed Tomography,”
J. Biomech.
,
41
(
7
), pp.
1390
1397
.
32.
Sheehan
,
F. T.
, 2010,
“The Instantaneous Helical Axis of the Subtalar and Talocrural Joints: A Non-Invasive in Vivo Dynamic Study,”
J. Foot Ankle Res.
,
3
, pp.
13
.
33.
Wolf
,
P.
,
Luechinger
,
R.
,
Boesiger
,
P.
,
Stuessi
,
E.
, and
Stacoff
,
A.
, 2007,
“A Mr Imaging Procedure to Measure Tarsal Bone Rotations,”
J. Biomech. Eng.
,
129
(
6
), pp.
931
36
.
34.
Bae
,
E.
and
Tai
,
X.-C.
, 2009,
“Efficient Global Minimization for the Multiphase Chan-Vese Model of Image Segmentation,”
Proceedings of the 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition,
pp.
28
41
.
You do not currently have access to this content.