The finite element (FE) model of the pelvic joint is helpful for clinical diagnosis and treatment of pelvic injuries. However, the effect of an FE model boundary condition on the biomechanical behavior of a pelvic joint has not been well studied. The objective of this study was to study the effect of boundary condition on the pelvic biomechanics predictions. A 3D FE model of a pelvis using subject-specific estimates of intact bone structures, main ligaments and bone material anisotropy by computed tomography (CT) gray value was developed and validated by bone surface strains obtained from rosette strain gauges in an in vitro pelvic experiment. Then three FE pelvic models were constructed to analyze the effect of boundary condition, corresponding to an intact pelvic joint, a pelvic joint without sacroiliac ligaments and a pelvic joint without proximal femurs, respectively. Vertical load was applied to the same pelvis with a fixed prosthetic femoral stem and the same load was simulated in the FE model. A strong correlation coefficient (R2=0.9657) was calculated, which indicated a strong correlation between the FE analysis and experimental results. The effect of boundary condition changes on the biomechanical response depended on the anatomical location and structure of the pelvic joint. It was found that acetabulum fixed in all directions with the femur removed can increase the stress distribution on the acetabular inner plate (approximately double the original values) and decrease that on the superior of pubis (from 7 MPa to 0.6 MPa). Taking sacrum and ilium as a whole, instead of sacroiliac and iliolumber ligaments, can influence the stress distribution on ilium and pubis bone vastly. These findings suggest pelvic biomechanics is very dependent on the boundary condition in the FE model.

References

1.
Bergmann
,
G.
,
Deuretzabacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns from Routine Activities
,”
J. Biomech.
,
34
, pp.
859
871
.
2.
Jacob
,
H. A. C.
,
Huggler
,
A. H.
,
Dietschi
,
C.
, and
Schreiber
,
A.
, 1976, “
Mechanical Function of Subchondral Bone as Experimentally Determined on the Acetabulum of the Human Pelvis
,”
J. Biomech.
,
9
, pp.
624
627
.
3.
Dalstra
,
M.
, and
Huiskes
,
R.
, 1991, “
The Pelvic Bone as a Sandwich Construction: A 3-D Finite Element Study
,”
J. Biomech.
,
24
(
6
), pp.
455
.
4.
Brekelmans
,
W.
,
Poort
,
H.
, and
Slooff
,
T.
, 1972, “
A New Method to Analyse the Mechanical Behaviour of Skeletal Parts
,”
Acta Orthop. Scand.
,
43
(
5
), pp.
301
317
.
5.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
364
373
.
6.
Garicia
,
J. M.
,
Doblare
,
M.
,
Seral
,
B.
,
Seral
,
F.
,
Palanca
,
D.
, and
Gracia
,
L.
, 2000, “
Three-Dimensional Finite Element Analysis of Several Internal and External Pelvis Fixations
,”
ASME J. Biomech. Eng.
,
122
, pp.
516
522
.
7.
Leung
,
A. S. O.
,
Gordon
,
L. M.
,
Skrinskas
,
T.
,
Szwedowski
,
T.
, and
Whyne
,
C. M.
, 2009, “
Effects of Bone Density Alterations on Strain Patterns in the Pelvis: Application of a Finite Element Model
,”
Proc. Inst. Mech. Eng. [H]
,
223
, pp.
965
979
.
8.
Oonishi
,
H.
,
Isha
,
H.
, and
Hasegawa
,
T.
, 1983, “
Mechanical Analysis of the Human Pelvis and its Application to the Artificial Hip Joint—By Means Of The Three Dimensional Finite Element Method
,”
J. Biomech.
,
16
, pp.
427
444
.
9.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
, 1995, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
272
278
.
10.
Dalstra
,
M.
, and
Huiskes
,
R.
, 1995, “
Load Transfer across the Pelvic Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.
11.
Dawson
,
J. M.
,
Khmelniker
,
B. V.
, and
McAndrew
,
M. P.
, 1999, “
Analysis of the Structural Behavior of the Pelvis during Lateral Impact using the Finite Element Method
,”
Accid. Anal. Prev.
,
31
, pp.
109
119
.
12.
Manley
,
M. T.
,
Ong
,
K. L.
, and
Kurtz
,
S. M.
, 2006, “
The Potential for Bone Loss in Acetabular Structures Following THA
,”
Clin. Orthop. Relat. Res.
,
453
, pp.
246
253
.
13.
Janda
,
S.
,
Helm
,
F. C. T.
, and
Blok
,
S. B.
, 2003, “
Measuring Morphological Parameters of the Pelvic Floor for Finite Element Modelling Purposes
,”
J. Biomech.
,
36
(
6
), pp.
749
757
.
14.
Bellini
,
C. M.
,
Galbusera
,
F.
,
Ceroni
,
R. G.
, and
Raimondi
,
M. T.
, 2007, “
Loss in Mechanical Contact of Cementless Acetabular Prostheses due to Post-Operative Weight Bearing: A Biomechanical Model
,”
Med. Eng. Phys.
,
29
(
2
), pp.
175
181
.
15.
Li
,
Z. P.
,
Alonso
,
J. E.
,
Kim
,
J. E.
,
Davidson
,
J. S.
,
Etheridge
,
B. S.
, and
Eberhardt
,
A.W.
, 2006, “
Three-Dimensional Finite Element Models of the Human Pubic Symphysis with Viscohyperelastic Soft Tissues
,”
Ann. Biomed. Eng.
,
34
, pp.
1452
1462
.
16.
Li
,
Z. P.
,
Kim
,
J. E.
,
Davidson
,
J. S.
,
Etheridge
,
B. S.
,
Alonso
,
J. E.
, and
Eberhardt
,
A.W.
, 2007, “
Biomechanical Response of the Pubic Symphysis in Lateral Pelvic Impacts: A Finite Element Study
,”
J. Biomech.
,
40
, pp.
2758
2766
.
17.
Phillips
,
A. T. M.
,
Pankaj
,
P.
,
Howie
,
C. R.
,
Usmani
,
A. S.
, and
Simpson
,
A. H. R. W.
, 2007, “
Finite Element Modelling of the Pelvis: Inclusion of Muscular and Ligamentous Boundary Conditions
,”
Med. Eng. Phys.
,
29
, pp.
739
748
.
18.
Kim
,
J. E.
,
Li
,
Z. P.
,
Ito
,
Y.
,
Huber
,
C. D.
,
Shih
,
A. M.
,
Eberhardt
,
A. W.
,
Yang
,
K. H.
,
King
,
A. I.
, and
Soni
,
B. K.
, 2009, “
Finite Element Model Development of a Child Pelvis with Optimization-Based Material Identification
,”
J. Biomech.
,
42
, pp.
2191
2195
.
19.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
, 1988, “
On the Dependence of Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
,
21
, pp.
13
16
.
20.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
, 1995, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
, pp.
347
355
.
21.
Sun
,
W.
,
Starly
,
B.
, and
Nam
,
J.
, 2005, “
Bio-CAD Modeling and its Applications in Computer-Aided Tissue Engineering
,”
Comput. Aided Des.
,
37
, pp.
1097
1114
.
22.
Kluess
,
D.
,
Souffrant
,
R.
,
Mittelmeier
,
W.
,
Wree
,
A.
,
Schmitz
,
K. P.
, and
Bader
,
R.
, 2009, “
A Convenient Approach for Finite-Element-Analyses of Orthopaedic Implants in Bone Contact: Modeling and Experimental Validation
,”
Comput. Meth. Programs Biomed.
,
95
, pp.
23
30
.
23.
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Pal
,
S.
, 2007, “
Simulation of Hip Fracture in Sideways Fall using a 3D Finite Element Model of Pelvis–Femur–Soft Tissue Complex with Simplified Representation of Whole Body
,”
Med. Eng. Phys.
,
29
, pp.
1167
1178
.
24.
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Pal
,
S.
, 2008, “
Three-Dimensional Finite Element Simulation of Pelvic Fracture during Side Impact with Pelvis-Femur-Soft Tissue Complex
,”
Int. J. Crashworthiness
,
13
(
3
), pp.
313
329
.
25.
Materialise Inc., 2010, Mimics version 13.1 help text, Leuven, Belgium.
26.
Dakin
,
G. J.
,
Arbelaez
,
R. A.
,
Molz
IV
F. J.
,
Alonso
,
J. E.
Mann
,
K. A.
and
Eberhardt
,
A.W.
, 2001, “
Elastic and Viscoelastic Properties of the Human Pubic Symphysis Joint: Effects of Lateral Impact Loading
,”
ASME J. Biomech. Eng.
,
123
, pp.
218
226
.
27.
Zheng
,
N.
,
Watson
,
L. G.
, and
Yong-Hing
,
K.
, 1997, “
Biomechanical Modelling of the Human Sacroiliac Joint
,”
Med. Biol. Eng. Comput.
,
35
, pp.
77
82
.
28.
Dassault Systèmes, 2008, ABAQUS, Version 6.8 Documentation, ABAQUS Analysis Manual, RI, USA.
29.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone. Joint. Surg. Am.
,
59
(
7
), pp.
954
962
.
30.
Helgason
,
B.
,
Perilli
,
E.
,
Schileo
,
E.
,
Taddei
,
F.
,
Brynjólfsson
,
S.
, and
Viceconti
,
M.
, 2008, “
Mathematical Relationships between Bone density and Mechanical properties: A Literature Review
,”
Clin. Biomech.
,
23
(
2
), pp.
135
146
.
31.
Keller
,
T. S.
, 1994, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
, pp.
1159
1168
.
32.
Denis
,
F.
,
Davis
,
S.
, and
Comfort
,
T.
, 1988, “
Sacral Fractures: An Important Problem. Retrospective Analysis of 236 Cases
,”
Clin. Orthop. Related Res.
,
227
, pp.
67
81
.
33.
Prevrhal
,
S.
,
Engelke
,
K.
, and
Kalender
,
W. A.
, 1999, “
Accuracy Limits for the Determination of Cortical Width and Density: the Influence of Objective Size and CT Imaging Parameters
,”
Phys. Med. Biol.
,
44
, pp.
751
764
.
You do not currently have access to this content.