Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with constants derived from quasi-static experiments showed a failure energy (13.2 J) and a fracture pattern and location in agreement with experimental results, but a compressive stiffness (1580 N/mm), a failure load (5976 N) and a displacement to failure (4.8 mm) outside the experimental corridors. The proposed method offers an innovative way to calibrate the hyperelastic material properties of the IVD and to offer a more realistic simulation of the FSU in fast dynamic compression.

References

1.
Delerba
,
F.
, 2001,
“Modélisation Géométrique Et Mécanique Tridimensionnelle Du Rachis Thoracique Et Lombaire En Configuration De Choc Automobile
,” Ph.D. thesis, École Nationale Supérieure d’Arts et Métiers, Paris.
2.
Yoganandan
,
N.
,
Ray
,
G.
,
Pintar
,
F. A.
,
Myklebust
,
J. B.
, and
Sances
,
A.
, Jr.
, 1989, “
Stiffness and Strain Energy Criteria to Evaluate the Threshold of Injury to an Intervertebral Joint
,”
J. Biomech.
,
22
(
2
), pp.
135
142
.
3.
Tran
,
N. T.
,
Watson
,
N. A.
,
Tencer
,
A. F.
,
Ching
,
R. P.
, and
Anderson
,
P. A.
, 1995, “
Mechanism of the Burst Fracture in the Thoracolumbar Spine. The Effect of Loading Rate
,”
Spine
,
20
(
18
), pp.
1984
1988
.
4.
Ochia
,
R. S.
,
Tencer
,
A. F.
, and
Ching
,
R. P.
, 2003, “
Effect of Loading Rate on Endplate and Vertebral Body Strength in Human Lumbar Vertebrae
,”
J. Biomech.
,
36
(
12
), pp.
1875
1881
.
5.
Kazarian
,
L.
, and
Graves
,
G. A.
, 1977, “
Compressive Strength Characteristics of the Human Vertebral Centrum
,”
Spine
,
2
(
1
), pp.
1
14
.
6.
Ivancic
,
P. C.
,
Coe
,
M. P.
,
Ndu
,
A. B.
,
Tominaga
,
Y.
,
Carlson
,
E. J.
,
Rubin
,
W.
,
Dipl-Ing
,
F. H.
, and
Panjabi
,
M. M.
, 2007, “
Dynamic Mechanical Properties of Intact Human Cervical Spine Ligaments
,”
Spine J.
,
7
(
6
), pp.
659
665
.
7.
Kemper
,
A. R.
,
Mcnally
,
C.
, and
Duma
,
S. M.
, 2007, “
The Influence of Strain Rate on the Compressive Stiffness Properties of Human Lumbar Intervertebral Discs
,”
Biomed. Sci. Instrum.
,
43
, pp.
176
181
.
8.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
, 2000, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), pp.
662
669
.
9.
El-Rich
,
M.
,
Arnoux
,
P. J.
,
Wagnac
,
E.
,
Brunet
,
C.
, and
Aubin
,
C. E.
, 2009, “
Finite Element Investigation of the Loading Rate Effect on the Spinal Load-Sharing Changes under Impact Conditions
,”
J. Biomech.
,
42
(
9
), pp.
1252
1262
.
10.
Qiu
,
T.-X.
,
Tan
,
K.-W.
,
Lee
,
V.-S.
, and
Teo
,
E.-C.
, 2006, “
Investigation of Thoracolumbar T12-L1 Burst Fracture Mechanism Using Finite Element Method
,”
Med. Eng. Phys.
,
28
(
7
), pp.
656
664
.
11.
Wilcox
,
R. K.
,
Allen
,
D. J.
,
Hall
,
R. M.
,
Limb
,
D.
,
Barton
,
D. C.
, and
Dickson
,
R. A.
, 2004, “
A Dynamic Investigation of the Burst Fracture Process Using a Combined Experimental and Finite Element Approach
,”
Eur. Spine. J.
,
13
(
6
), pp.
481
488
.
12.
Wang
,
J. L.
,
Parnianpour
,
M.
,
Shirazi-Adl
,
A.
, and
Engin
,
A. E.
, 2000, “
Viscoelastic Finite-Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion. Effect of Loading Rate
,”
Spine
,
25
(
3
), pp.
310
318
.
13.
Li
,
S.
, 1994, “
Response of Human Intervertebral Disk to Prolonged Axial Loading and Low-Frequency Vibration
,” Ph.D. thesis, University of Ilinois at Chigaco, Chicago IL.
14.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1994, “
Compressive Mechanical Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
(
2
), pp.
212
221
.
15.
Iatridis
,
J. C.
,
Weidenbaum
,
M.
,
Setton
,
L. A.
, and
Mow
,
V. C.
, 1996, “
Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc
,”
Spine
,
21
(
10
), pp.
1174
1184
.
16.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1997, “
The Viscoelastic Behavior of the Non-Degenerate Human Lumbar Nucleus Pulposus in Shear
,”
J. Biomech.
,
30
(
10
), pp.
1005
1013
.
17.
Duma
,
S. M.
,
Kemper
,
A. R.
,
Mcneely
,
D. M.
,
Brolinson
,
P. G.
, and
Matsuoka
,
F.
, 2006, “
Biomechanical Response of the Lumbar Spine in Dynamic Compression
,”
Biomed. Sci. Instrum.
,
42
, pp.
476
481
.
18.
El-Rich
,
M.
,
Wagnac
,
E.
,
Arnoux
,
P. J.
, and
Aubin
,
C. E.
, 2008, “
Detailed Modeling of the Lumbar Spine for Trauma Applications: Preliminary Results
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(S
1
), pp.
93
94
.
19.
Wagnac
,
E.
,
Michardiere
,
D.
,
Garo
,
A.
,
Arnoux
,
P. J.
,
Mac-Thiong
,
J. M.
, and
Aubin
,
C. E.
, 2010, “
Biomechanical Analysis of Pedicle Screw Placement: A Feasibility Study
,”
Stud. Health Technol. Inform.
,
158
, pp.
167
171
.
20.
Fazzalari
,
N. L.
,
Parkinson
,
I. H.
,
Fogg
,
Q. A.
, and
Sutton-Smith
,
P.
, 2006, “
Antero-Postero Differences in Cortical Thickness and Cortical Porosity of T12 to L5 Vertebral Bodies
,”
Jt. Bone Spine
,
73
(
3
), pp.
293
297
.
21.
Roberts
,
S.
,
Mccall
,
I. W.
,
Menage
,
J.
,
Haddaway
,
M. J.
, and
Eisenstein
,
S. M.
, 1997, “
Does the Thickness of the Vertebral Subchondral Bone Reflect the Composition of the Intervertebral Disc?
,”
Eur. Spine J.
,
6
(
6
), pp.
385
389
.
22.
Garo
,
A.
,
Arnoux
,
P. J.
, and
Aubin
,
C. E.
, 2009, “
Estimation of Bone Material Properties Using an Inverse Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(S
1
), pp.
121
122
.
23.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Myers
,
T.
,
Elhagediab
,
A.
, and
Sances
,
A.
, Jr.
, 1992, “
Biomechanical Properties of Human Lumbar Spine Ligaments
,”
J. Biomech.
,
25
(
11
), pp.
1351
1356
.
24.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
,
J.B. Lippincott
,
Philadelphia
.
25.
Schmidt
,
H.
,
Heuer
,
F.
,
Drumm
,
J.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2007, “
Application of a Calibration Method Provides More Realistic Results for a Finite Element Model of a Lumbar Spinal Segment
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
4
), pp.
377
384
.
26.
Natarajan
,
R. N.
, and
Andersson
,
G. B.
, 1999, “
The Influence of Lumbar Disc Height and Cross-Sectional Area on the Mechanical Response of the Disc to Physiologic Loading
,”
Spine
,
24
(
18
), pp.
1873
1881
.
27.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
, 1986, “
A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
,
19
(
4
), pp.
331
350
.
28.
Mooney
,
M.
, 1940, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
, pp.
582
592
.
29.
Rivlin
,
R. S.
, 1984, “
Forty Years of Non-Linear Continuum Mechanics.
,”
Proc. IX International Congress on Rheology
,
Acapulco, Mexico
, pp.
1
29
.
30.
Fung
,
Y. C.
, 1972, “
Stress-Strain-History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics: Its Foundations and Objectives
,
Y. C.
Fung
,
N.
Perrone
, and
M.
Anliker
, eds.,
Prentice-Hall inc.
,
Englewood Cliffs, New Jersey
.
31.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2006, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
4
), pp.
337
344
.
32.
Goel
,
V. K.
,
Monroe
,
B. T.
,
Gilbertson
,
L. G.
, and
Brinckmann
,
P.
, 1995, “
Interlaminar Shear Stresses and Laminae Separation in a Disc. Finite Element Analysis of the L3-L4 Motion Segment Subjected to Axial Compressive Loads
,”
Spine
,
20
(
6
), pp.
689
698
.
33.
Bates
,
J. B.
, and
Sienz
,
J.
, 2004, “
Formulation of the Optimal Latin Hypercube Design of Experiments Using a Permutation Genetic Algorithm
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs
,
California
, pp.
19
22
.
34.
Marchand
,
F.
, and
Ahmed
,
A. M.
, 1990, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine
,
15
(
5
), pp.
402
410
.
35.
Langrana
,
N. A.
,
Harten
,
R. R.
,
Lin
,
D. C.
,
Reiter
,
M. F.
, and
Lee
,
C. K.
, 2002, “
Acute Thoracolumbar Burst Fractures: A New View of Loading Mechanisms
,”
Spine
,
27
(
5
), pp.
498
508
.
36.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1980, “
The Effect of Posture on the Role of the Apophysial Joints in Resisting Intervertebral Compressive Forces
,”
J. Bone Joint Surg. Br.
,
62
(
3
), pp.
358
362
.
37.
Hakim
,
N. S.
, and
King
,
A. I.
, 1976, “
Static and Dynamic Articular Facet Loads
,”
Proceedings of Stapp Car Crash Conference
, pp.
609
639
.
38.
Brown
,
S. H.
,
Gregory
,
D. E.
, and
Mcgill
,
S. M.
, 2008, “
Vertebral End-Plate Fractures as a Result of High Rate Pressure Loading in the Nucleus of the Young Adult Porcine Spine
,”
J. Biomech.
,
41
(
1
), pp.
122
127
.
39.
Dunlop
,
R. B.
,
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1984, “
Disc Space Narrowing and the Lumbar Facet Joints
,”
J. Bone Joint Surg. Br.
,
66
(
5
), pp.
706
710
.
40.
Little
,
J. P.
, 2004,
“Response of Human Intervertebral Disc to Prolonged Axial Loading and Low-Frequency Vibration,”
Ph.D. thesis, Queensland University of Technology, Brisbane, Australia.
41.
Little
,
J. P.
,
Adam
,
C. J.
,
Evans
,
J. H.
,
Pettet
,
G. J.
, and
Pearcy
,
M. J.
, 2007, “
Nonlinear Finite Element Analysis of Anular Lesions in the L4/5 Intervertebral Disc
,”
J. Biomech.
,
40
(
12
), pp.
2744
2751
.
42.
Oloyede
,
A.
, and
Broom
,
N. D.
, 1993, “
A Physical Model for the Time-Dependent Deformation of Articular Cartilage
,”
Connect. Tissue Res.
,
29
(
4
), pp.
251
261
.
43.
Disilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: Ii–Effect of Variable Strain Rates
,”
J. Biomech. Eng.
,
123
(
2
), pp.
198
200
.
44.
Lee
,
C. K.
,
Kim
,
Y. E.
,
Lee
,
C. S.
,
Hong
,
Y. M.
,
Jung
,
J. M.
, and
Goel
,
V. K.
, 2000, “
Impact Response of the Intervertebral Disc in a Finite-Element Model
,”
Spine
,
25
(
19
), pp.
2431
2439
.
45.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1982, “
Prolapsed Intervertebral Disc. A Hyperflexion Injury 1981 Volvo Award in Basic Science
,”
Spine
,
7
(
3
), pp.
184
191
.
46.
Wolf
,
A.
,
Shoham
,
M.
,
Michael
,
S.
, and
Moshe
,
R.
, 2001, “
Morphometric Study of the Human Lumbar Spine for Operation-Workspace Specifications
,”
Spine
,
26
(
22
), pp.
2472
2477
.
47.
Liu
,
L.
,
Pei
,
F.
,
Song
,
Y.
,
Zou
,
L.
,
Zhang
,
C.
, and
Zhou
,
Z.
, 2002, “
The Influence of the Intervertebral Disc on Stress Distribution of the Thoracolumbar Vertebrae under Destructive Load
,”
Chin. J. Traumatol.
,
5
(
5
), pp.
279
283
.
48.
Leucht
,
P.
,
Fischer
,
K.
,
Muhr
,
G.
, and
Mueller
,
E. J.
, 2009, “
Epidemiology of Traumatic Spine Fractures
,”
Injury
,
40
(
2
), pp.
166
172
.
49.
Yang
,
K.
,
Zhu
,
F.
,
Luan
,
F.
,
Zhao
,
L.
, and
Begeman
,
P. C.
, 1998, “
Development of a Finite Element Model of the Human Neck
,”
42th Stapp Car Crash Conference, Fort Lauderdale
,
FL, USA
, pp.
195
205
.
You do not currently have access to this content.