Articular cartilage is comprised of macromolecules, proteoglycans, with (charged) chondroitin sulfate side-chains attached to them. The proteoglycans are attached to longer hyaluronic acid chains, trapped within a network of type II collagen fibrils. As a consequence of their relatively long persistence lengths, the number of persistence lengths along the chondroitin sulfate and proteoglycan chains is relatively small, and consequently, the retraction times for these side chains are also quite short. We argue that, as a consequence of this, they will not significantly inhibit the reptation of the hyaluronic acid chains. Scaling arguments applied to this model allow us to show that the shortest of the mechanical relaxation times of cartilage, that have been determined by Fyhrie and Barone to be due to reptation of the hyaluronic acid polymers, should have a dependence on the load, i.e., force per unit interface area P, carried by the cartilage, proportional to P3/2.

References

1.
McCutchen
,
C. W.
, 1959, “
Mechanism of Animal Joints: Sponge Hydrostatic and Weeping-Bearings
,”
Nature (London)
,
184
, pp.
1284
1285
.
2.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
3.
Muir
,
I. H. M.
, 1979, “
Biochemistry
,”
Adult Articular Cartilage
,
M. R. R.
Freeman
, ed.,
Pitman Medical Publishing
,
Kent, England
, pp.
145
213
.
4.
Urban
,
J. P. G.
,
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Dillon
,
J.
, 1979, “
Swelling Pressures of Proteoglycans at the Concentration Found in Cartilage Tissues
,”
Biorheology
,
16
, pp.
447
464
.
5.
Maroudas
A.
, and
Bannon
,
C.
, 1981, “
Measurement of Swelling Pressure in Cartilage and Comparison with the Osmotic Pressure of Constituent Proteoglycans
,”
Biorheology
,
18
, pp.
619
632
.
6.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
J. Biomech. Eng.
,
123
, pp.
410
417
.
7.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
J. Biomech. Eng.
,
123
, pp.
191
197
.
8.
Fyhrie
,
D. P.
, and
Barone
,
J. R.
, 2003, “
Polymer Dynamics as a Mechanistic Model for the Flow-Independent Viscoelasticity of Cartilage
,”
J. Biomech. Eng.
,
125
, pp.
578
584
.
9.
Hayes
,
W. C.
, and
Bodine
,
A. J.
, 1978, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
,
11
, pp.
407
419
.
10.
Mak
,
A. F.
, 1986, “
The Apparent Viscoelastic Behavior of Articular Cartilage-The Contributions from the Intrinsic Matrix Viscoelasticity and Interstitial Flows
,”
J. Biomech. Eng.
,
108
, pp.
123
130
.
11.
Doi
,
M.
, and
Edwards
,
S. F.
, 1986,
The Theory of Polymer Dynamics
,
Clarendon Press
,
Oxford
.
12.
Milner
,
S. T.
, and
McLeish
,
T. C. B.
, 1997, “
Parameter-Free Theory for Stress Relaxation in Star Polymer Melts
,”
Macromolecules
,
30
, pp.
2159
2166
.
13.
Pearson
,
D. S.
,
Helfand
,
E.
, 1984, “
Viscoelastic Properties of Star-Shaped Polymers
,”
Macromolecules
,
17
, pp.
888
895
.
14.
de Gennes
,
P.-G.
, 1975. “
Raptation of Stars
,”
J. Phys.
,
36
, pp.
1199
1203
.
15.
de Gennes
,
P.-G.
, 1979,
Scaling Concepts in Polymer Physics
,
Cornell University Press
,
Ithaca
.
16.
Doi
,
M.
, and
Kuzuu
,
N. Y.
, 1980, “
Rheology of Star Polymers in Concentrated Solutions and Melts
,”
J. Polym. Sci., Polym. Lett. Ed.
,
18
, pp.
775
780
.
17.
Bathe
,
M.
,
Rutledge
,
G. C.
,
Grodzinsky
,
A. J.
, and
Tidor
,
B.
, 2005, “
A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
,”
Biophys. J.
,
88
, pp.
3870
3887
.
18.
Papagiannopoulos
,
A.
,
Waigh
,
T. A.
,
Hardingham
,
T.
, and
Heinrich
,
M.
, 2006, “
Solution Structure and Dynamics of Cartilage Aggrecan
,”
Biomacromolecules
,
7
, pp.
2162
2172
.
19.
Ng
,
L.
,
Grodzinsky
,
A. J.
,
Patwari
,
P.
,
Shandy
,
J.
,
Plaas
,
A.
, and
Ortiz
,
C.
, 2003, “
Individual Cartilage Aggrecan Macromolecules and Their Constituent Glycosaminoglycans Visualized Via Atomic Force Microscopy
,”
J. Struct. Biol.
,
143
, pp.
242
257
.
20.
Overbeck
,
J. T. G.
, 1956, “
The Donnan Equilibrium
,”
Prog. Biophys. Biophys. Chem.
,
6
, pp.
58
84
.
21.
Reichl
,
L. E.
, 1998,
A Modern Course in Statistical Physics
, 2nd ed.,
Wiley and Sons
,
New York
, pp.
74
78
.
22.
Schaefer
,
D. W.
,
Joanny
,
J. F.
, and
Pincus
,
P.
, 1980, “
Dynamics of Semiflexible Polymers in Solution
,”
Macromolecules
,
13
, pp.
1280
1289
.
You do not currently have access to this content.