Cardiovascular diseases are the number one cause of death in the world, making the understanding of hemodynamics and development of treatment options imperative. The most common modality for treatment of occlusive coronary artery diseases is the use of stents. Stent design profoundly influences the postprocedural hemodynamic and solid mechanical environment of the stented artery. However, despite their wide acceptance, the incidence of stent late restenosis is still high (Zwart et al., 2010, “Coronary Stent Thrombosis in the Current Era: Challenges and Opportunities for Treatment,” Current Treatment Options in Cardiovascular Medicine, 12(1), pp. 46–57), and it is most prevailing at the proximal and distal ends of the stent. In this work, we focus our investigation on the localized hemodynamic effects of compliance mismatch due to the presence of a stent in an artery. The compliance mismatch in a stented artery is maximized at the proximal and distal ends of the stent. Hence, it is our objective to understand and reveal the mechanism by which changes in compliance contribute to the generation of nonphysiological wall shear stress (WSS). Such adverse hemodynamic conditions could have an effect on the onset of restenosis. Three-dimensional, spatiotemporally resolved computational fluid dynamics simulations of pulsatile flow with fluid-structure interaction were carried out for a simplified coronary artery with physiologically relevant flow parameters. A model with uniform elastic modulus is used as the baseline control case. In order to study the effect of compliance variation on local hemodynamics, this baseline model is compared with models where the elastic modulus was increased by two-, five-, and tenfold in the middle of the vessel. The simulations provided detailed information regarding the recirculation zone dynamics formed during flow reversals. The results suggest that discontinuities in compliance cause critical changes in local hemodynamics, namely, altering the local pressure and velocity gradients. The change in pressure gradient at the discontinuity was as high as 90%. The corresponding changes in WSS and oscillatory shear index calculated were 9% and 15%, respectively. We demonstrate that these changes are attributed to the physical mechanism associating the pressure gradient discontinuities to the production of vorticity (vorticity flux) due to the presence of the stent. The pressure gradient discontinuities and augmented vorticity flux are affecting the wall shear stresses. As a result, this work reveals how compliance variations act to modify the near wall hemodynamics of stented arteries.

1.
Berry
,
J. L.
,
Moore
,
J. E.
, Jr.
,
Newman
,
V. S.
, and
Routh
,
W. D.
, 1995,
In Vitro Flow Visualization in Stented Arterial Segments
,
ASME
,
San Francisco, CA
, Vol.
31
, pp.
231
232
.
2.
Rachev
,
A.
,
Manoach
,
E.
,
Berry
,
J.
, and
Moore
,
J. E.
, 2000, “
Model of Stress-Induced Geometrical Remodeling of Vessel Segments Adjacent to Stents and Artery/Graft Anastomoses
,”
J. Theor. Biol.
0022-5193,
206
(
3
), pp.
429
443
.
3.
Rolland
,
P. H.
,
Charifi
,
A. B.
,
Verrier
,
C.
,
Bodard
,
H.
,
Friggi
,
A.
,
Piquet
,
P.
,
Moulin
,
G.
, and
Bartoli
,
J. M.
, 1999, “
Hemodynamics and Wall Mechanics After Stent Placement in Swine Iliac Arteries: Comparative Results From Six Stent Designs
,”
Radiology
0033-8419,
213
(
1
), pp.
229
246
.
4.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Kinlay
,
S.
,
Clark
,
M. E.
,
Sonka
,
M.
,
Wahle
,
A.
,
Ilegbusi
,
O. J.
,
Yeghiazarians
,
Y.
,
Popma
,
J. J.
,
Orav
,
J.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
, 2003, “
Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans—In Vivo 6-Month Follow-Up Study
,”
Circulation
0009-7322,
108
(
4
), pp.
438
444
.
5.
Pache
,
J.
,
Kastrati
,
A.
,
Mehilli
,
J.
,
Schuhlen
,
H.
,
Dotzer
,
F.
,
Hausleiter
,
J.
,
Fleckenstein
,
M.
,
Neumann
,
F. J.
,
Sattelberger
,
U.
,
Schmitt
,
C.
,
Muller
,
M.
,
Dirschinger
,
J.
, and
Schomig
,
A.
, 2002, “
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (Isar-Stereo-2) Trial
,”
Journal of the American College of Cardiology
,
41
(
8
), pp.
1283
1288
.
6.
Ojha
,
M.
, 1994, “
Wall Shear-Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
0009-7330,
74
(
6
), pp.
1227
1231
.
7.
Leask
,
R. L.
,
Butany
,
J.
,
Johnston
,
K. W.
,
Ethier
,
C. R.
, and
Ojha
,
M.
, 2005, “
Human Saphenous Vein Coronary Artery Bypass Graft Morphology, Geometry and Hemodynamics
,”
Ann. Biomed. Eng.
0090-6964,
33
(
3
), pp.
301
309
.
8.
Fry
,
D. L.
, 1968, “
Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients
,”
Circ. Res.
0009-7330,
22
(
2
), pp.
165
197
.
9.
Baird
,
R. N.
, and
Abbott
,
W. M.
, 1976, “
Pulsatile Blood-Flow in Arterial Grafts
,”
Lancet
0140-6736,
308
(
7992
), pp.
948
950
.
10.
Abbott
,
W. M.
,
Megerman
,
J.
,
Hasson
,
J. E.
,
Litalien
,
G.
, and
Warnock
,
D. F.
, 1987, “
Effect of Compliance Mismatch on Vascular Graft Patency
,”
J. Vasc. Surg.
0741-5214,
5
(
2
), pp.
376
382
.
11.
Charonko
,
J. J.
,
Ragab
,
S. A.
, and
Vlachos
,
P. P.
, 2009, “
A Scaling Parameter for Predicting Pressure Wave Reflection in Stented Arteries
,”
ASME J. Med. Devices
1932-6181,
3
(
1
), p.
011006
.
12.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S.
, and
Vlachos
,
P.
, 2009, “
In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress
,”
Ann. Biomed. Eng.
0090-6964,
37
(
7
), pp.
1310
1321
.
13.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S.
, and
Vlachos
,
P.
, 2010, “
In Vitro Comparison of the Effect of Stent Configuration on Wall Shear Stress Using Time-Resolved Particle Image Velocimetry
,”
Ann. Biomed. Eng.
0090-6964,
38
(
3
), pp.
889
902
.
14.
LaDisa
,
J. F.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
8
), pp.
972
980
.
15.
LaDisa
,
J. F.
,
Hettrick
,
D. A.
,
Olson
,
L. E.
,
Guler
,
I.
,
Gross
,
E. R.
,
Kress
,
T. T.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2002, “
Stent Implantation Alters Coronary Artery Hemodynamics and Wall Shear Stress During Maximal Vasodilation
,”
J. Appl. Physiol.
0021-8987,
93
(
6
), pp.
1939
1946
.
16.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Molthen
,
R. C.
,
Hettrick
,
D. A.
,
Pratt
,
P. F.
,
Hardel
,
M. D.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2005, “
Alterations in Wall Shear Stress Predict Sites of Neointimal Hyperplasia After Stent Implantation in Rabbit Iliac Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
5
), pp.
H2465
H2475
.
17.
Ladisa
,
J. F.
,
Warltier
,
D. C.
,
Olson
,
L. E.
,
Kersten
,
J. R.
, and
Pagel
,
P. S.
, 2003, “
Shear-Modulated Neointimal Hyperplasia Following Stent Implantation
,”
FASEB J.
0892-6638,
17
(
4
), p.
A144
.
18.
Berry
,
J. L.
,
Santamarina
,
A.
,
Moore
,
J. E.
,
Roychowdhury
,
S.
, and
Routh
,
W. D.
, 2000, “
Experimental and Computational Flow Evaluation of Coronary Stents
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
386
398
.
19.
Yazdani
,
S. K.
,
Moore
,
J. E.
,
Berry
,
J. L.
, and
Vlachos
,
P. P.
, 2004, “
DPIV Measurements of Flow Disturbances in Stented Artery Models: Adverse Affects of Compliance Mismatch
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
559
566
.
20.
Tafti
,
D. K.
, 2001,
Genidlest—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,
American Society of Mechanical Engineers
,
New York, NY
, Vol.
256
, pp.
347
356
.
21.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, 2009, “
A Parallel Boundary Fitted Dynamic Mesh Solver for Applications to Flapping Flight
,”
Comput. Fluids
0045-7930,
38
(
8
), pp.
1592
1607
.
22.
Tafti
,
D. K.
, 2011, “
Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries
,”
Advances in Computational Fluid Dynamics and Heat Transfer
,
WIT Press
,
Southampton, UK
.
23.
Čanić
,
S.
,
Hartley
,
C. J.
,
Rosenstrauch
,
D.
,
Tambača
,
J.
,
Guidoboni
,
G.
, and
Mikelić
,
A.
, 2006, “
Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics, and Experimental Validation
,”
Ann. Biomed. Eng.
0090-6964,
34
(
4
), pp.
575
592
.
24.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Schwaab
,
M.
, and
Conklin
,
B. S.
, 2008, “
Arterial Fluid Mechanics Modeling With the Stabilized Space-Time Fluid-Structure Interaction Technique
,”
Int. J. Numer. Methods Fluids
0271-2091,
57
(
5
), pp.
601
629
.
25.
Karri
,
S.
, 2009, “
Laminar and Transitional Flow Disturbances in Diseased and Stented Arteries
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA, http://scholar.lib.vt.edu/theses/available/etd-09062009-204633/http://scholar.lib.vt.edu/theses/available/etd-09062009-204633/.
26.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
, 2000, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
0090-6964,
28
(
11
), pp.
1281
1299
.
27.
Čanić
,
S.
, and
Kim
,
E. H.
, 2003, “
Mathematical Analysis of the Quasilinear Effects in a Hyperbolic Model Blood Flow Through Compliant Axi-Symmetric Vessels
,”
Math. Methods Appl. Sci.
0170-4214,
26
(
14
), pp.
1161
1186
.
28.
Canic
,
S.
,
Lamponi
,
D.
,
Mikelic
,
A.
, and
Tambaca
,
J.
, 2005, “
Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries
,”
Multiscale Model. Simul.
1540-3459,
3
(
3
), pp.
559
596
.
29.
Canic
,
S.
, and
Mikelic
,
A.
, 2003, “
Effective Equations Modeling the Flow of a Viscous Incompressible Fluid Through a Long Elastic Tube Arising in the Study of Blood Flow Through Small Arteries
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
2
(
3
), pp.
431
463
.
30.
Canic
,
S.
,
Tambaca
,
J.
,
Mikelic
,
A.
,
Hartley
,
C. J.
,
Mirkovic
,
D.
,
Chavez
,
J.
,
Rosenstrauch
,
D.
, and
Ieee
, 2004,
Blood Flow Through Axially Symmetric Sections of Compliant Vessels: New Effective Closed Models
,
IEEE
,
San Francisco, CA
, pp.
3696
3699
.
31.
Mikelic
,
A.
,
Guidoboni
,
G.
, and
Canic
,
S.
, 2007, “
Fluid-Structure Interaction in a Pre-Stressed Tube With Thick Elastic Walls I: The Stationary Stokes Problem
,”
Networks Heterog. Media
1556-1801,
2
(
3
), pp.
396
423
.
32.
Vernhet
,
H.
,
Demaria
,
R.
,
Perez-Martin
,
A.
,
Juan
,
J. M.
,
Oliva-Lauraire
,
M. C.
,
Marty-Double
,
C.
,
Senac
,
J. P.
, and
Dauzat
,
M.
, 2003, “
Wall Mechanics of the Stented Rabbit Aorta: Long-Term Study and Correlation With Histological Findings
,”
J. Endovasc. Ther.
1526-6028,
10
(
3
), pp.
577
584
.
33.
He
,
X. J.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
34.
Lighthill
,
M. J.
, 1963,
Laminar Boundary Layers
,
Dover
,
New York
.
35.
Patel
,
D. J.
, and
Vaishnav
,
R. N. J. A.
, 1980,
Basic Hemodynamics and Its Role in Disease Processes
,
University Park Press
,
Baltimore, MD
.
36.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993,
The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis
,
ASME
,
Breckenridge, CO
, pp.
588
594
.
37.
Kamiya
,
A.
, and
Togawa
,
T.
, 1980, “
Adaptive Regulation of Wall Shear-Stress to Flow Change in the Canine Carotid-Artery
,”
Am. J. Physiol.
0002-9513,
239
(
1
), pp.
H14
H21
.
38.
Kamiya
,
A.
,
Bukhari
,
R.
, and
Togawa
,
T.
, 1984, “
Adaptive Regulation of Wall Shear-Stress Optimizing Vascular Tree Function
,”
Bull. Math. Biol.
0092-8240,
46
(
1
), pp.
127
137
.
39.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G. A.
, 1995, “
Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
3
), pp.
350
357
.
40.
Womersley
,
J. R.
, and
Wright Air Development Center
, 1957, “
An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries
,”
Wright Air Development Center (WADC)
, Technical Report No. 56-614.
41.
Zamir
,
M.
, 2000, “
The Physics of Pulsatile Flow
,”
Biological Physics
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.