Knowledge of elastic properties of cerebral aneurysms is crucial for understanding the biomechanical behavior of the lesion. However, characterizing tissue properties using in vivo motion data presents a tremendous challenge. Aside from the limitation of data accuracy, a pressing issue is that the in vivo motion does not expose the stress-free geometry. This is compounded by the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This article introduces a method for identifying the heterogeneous properties of aneurysm wall tissue under unknown stress-free configuration. In the proposed approach, an accessible configuration is taken as the reference; the unknown stress-free configuration is represented locally by a metric tensor describing the prestrain from the stress-free configuration to the reference configuration. Material parameters are identified together with the metric tensor pointwisely. The paradigm is tested numerically using a forward-inverse analysis loop. An image-derived sac is considered. The aneurysm tissue is modeled as an eight-ply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four material parameters. The parameters are assumed to vary continuously in two assigned patterns to represent two types of material heterogeneity. Nine configurations between the diastolic and systolic pressures are generated by forward quasi-static finite element analyses. These configurations are fed to the inverse analysis to delineate the material parameters and the metric tensor. The recovered and the assigned distributions are in good agreement. A forward verification is conducted by comparing the displacement solutions obtained from the recovered and the assigned material parameters at a different pressure. The nodal displacements are found in excellent agreement.

1.
Ronkainen
,
A.
, and
Hernesniemi
,
J.
, 1992, “
Subarachnoid Haemorrhage of Unknown Aetiology
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
119
(
1–4
), pp.
29
34
.
2.
Crompton
,
M. R.
, 1966, “
Mechanism of Growth and Rupture in Cerebral Berry Aneurysms
,”
Br. Med. J.
0007-1447,
1
, pp.
1138
1142
.
3.
Kassell
,
N. F.
, and
Torner
,
J. C.
, 1983, “
Size of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
12
, pp.
291
297
.
4.
Ujiie
,
H.
,
Sato
,
K.
,
Onda
,
H.
,
Oikkawa
,
A.
,
Kagawa
,
M.
,
Atakakura
,
K.
, and
Kobayashi
,
N.
, 1993, “
Clinical Analysis of Incidentally Discovered Unruptured Aneurysms
,”
Stroke
0039-2499,
24
, pp.
1850
1856
.
5.
Wiebers
,
D. O.
,
Whisnant
,
J. P.
,
Sundt
,
T. M.
, and
O’Fallon
,
W. M.
, 1987, “
The Significance of Unruptured Intracranial Saccular Aneurysms
,”
J. Neurosurg.
0022-3085,
66
, pp.
23
29
.
6.
The International Study of Unruptured Intracranial Aneurysms Investigators
, 1998, “
Unruptured Intracranial Aneurysms—Risk of Rupture and Risks of Surgical Intervention. International Study of Unruptured Intracranial Aneurysms Investigators
,”
N. Engl. J. Med.
0028-4793,
339
, pp.
1725
1733
.
7.
Ujiie
,
H.
,
Tachibana
,
H.
,
Hiramatsu
,
O.
,
Hazel
,
A. L.
,
Matsumoto
,
T.
,
Ogasawara
,
Y.
,
Nakajima
,
H.
,
Hori
,
T.
,
Takakura
,
K.
, and
Kajiya
,
F.
, 1999, “
Effects of Size and Shape (Aspect Ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
45
, pp.
119
130
.
8.
Ujiie
,
H.
,
Tamano
,
Y.
,
Sasaki
,
K.
, and
Hori
,
T.
, 2001, “
Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm?
,”
Neurosurgery
0148-396X,
48
, pp.
495
503
.
9.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Harbaugh
,
R. E.
, 2005, “
Quantified Aneurysm Shape and Rupture Risk
,”
J. Neurosurg.
0022-3085,
102
, pp.
355
362
.
10.
Kyriacou
,
S. K.
, and
Humphrey
,
J. D.
, 1996, “
Influence of Size, Shape and Properties on the Mechanics of Axisymmetric Saccular Aneurysms
,”
J. Biomech.
0021-9290,
29
, pp.
1015
1022
.
11.
Shah
,
A. D.
,
Harris
,
J. L.
,
Kyriacou
,
S. K.
, and
Humphrey
,
J. D.
, 1998, “
Further Roles of Geometry and Properties in the Mechanics of Saccular Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
, pp.
109
121
.
12.
Ma
,
B.
,
Lu
,
J.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
, 2007, “
Nonlinear Anisotropic Stress Analysis of Anatomically Realistic Cerebral Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
88
99
.
13.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2008, “
Inverse Method of Stress Analysis for Cerebral Aneurysms
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
477
486
.
14.
Toth
,
M.
,
Nadasy
,
G. L.
,
Nyary
,
I.
,
Kerényi
,
T.
, and
Monos
,
E.
, 2000, “
Are There Systemic Changes in the Arterial Biomechanics of Intracranial Aneurysm Patients?
,”
Eur. J. Physiol.
0031-6768,
439
, pp.
573
578
.
15.
Anderson
,
T.
, 2006, “
Arterial Stiffness or Endothelial Dysfunction as a Surrogate Marker of Vascular Risk
,”
Can. J. Cardiol.
0828-282X,
22
, pp.
72B
80B
.
16.
Balocco
,
S.
,
Camara
,
O.
,
Vivas
,
E.
,
Sola
,
T.
,
Guimaraens
,
L.
,
Gratama van Andel
,
H. A. F.
,
Majoie
,
C. B.
,
Pozoc
,
J. M.
,
Bijnens
,
B. H.
, and
Frangi
,
A. F.
, 2010, “
Feasibility of Estimating Regional Mechanical Properties of Cerebral Aneurysms In Vivo
,”
Med. Phys.
0094-2405,
37
, pp.
1689
1706
.
17.
Lu
,
J.
, and
Zhao
,
X.
, 2009, “
Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes. Part I: Theoretical and Computational Developments
,”
ASME J. Appl. Mech.
0021-8936,
76
, p.
061013
.
18.
Zhao
,
X.
,
Chen
,
X.
, and
Lu
,
J.
, 2009, “
Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes. Part II: Experimental Validation
,”
ASME J. Appl. Mech.
0021-8936,
76
, p.
061014
.
19.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1996, “
Computational Methods for Inverse Finite Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
136
, pp.
47
57
.
20.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1998, “
Computational Methods for Inverse Deformations in Quasi-Incompressible Finite Elasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
821
838
.
21.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
40
, pp.
693
696
.
22.
Zhou
,
X.
, and
Lu
,
J.
, 2008, “
Inverse Formulation for Geometrically Exact Stress Resultant Shells
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
1278
1302
.
23.
Zhao
,
X.
,
Raghavan
,
M. L.
, and
Lu
,
J.
, 2011, “
Identifying Heterogeneous Anisotropic Properties in Cerebral Aneurysms: A Pointwise Approach
,”
Biomech. Model. Mechanobiol.
1617-7959,
10
, pp.
177
189
.
24.
Zhou
,
X.
, and
Lu
,
J.
, 2009, “
Estimation of Vascular Open Configuration Using Finite Element Inverse Elastostatic Method
,”
Eng. Comput.
0177-0667,
25
, pp.
49
59
.
25.
Zhou
,
X.
,
Raghavan
,
M.
,
Harbaugh
,
R.
, and
Lu
,
J.
, 2010, “
Patient-Specific Wall Stress Analysis in Cerebral Aneurysms Using Inverse Shell Model
,”
Ann. Biomed. Eng.
0090-6964,
38
(
2
), pp.
478
489
.
26.
Gee
,
M. W.
,
Reeps
,
C.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
, 2009, “
Prestressing in Finite Deformation Abdominal Aortic Aneurysm Simulation
,”
J. Biomech.
0021-9290,
42
, pp.
1732
1739
.
27.
Gee
,
M. W.
,
Forster
,
Ch.
, and
Wall
,
W. A.
, 2010, “
A Computational Strategy for Prestressing Patient-Specific Biomechanical Problems Under Finite Deformation
,”
International Journal for Numerical Methods in Biomedical Engineering
,
26
, pp.
52
72
.
28.
Lu
,
J.
, “
A Covariant Constitutive Theory for Anisotropic Hyperelastic Solids With Initial Strains
,”
Math. Mech. Solids
1081-2865, in press.
29.
Noll
,
W.
, 1958, “
A mathematical theory of the mechanical behavior of continuous media
,”
Arch. Ration. Mech. Anal.
0003-9527,
2
, pp.
197
226
.
30.
Lee
,
E. H.
, 1969, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
1
6
.
31.
Maugin
,
G. A.
, and
Epstein
,
M.
, 1998, “
Geometrical Material Structure of Elastoplasticity
,”
Int. J. Plast.
0749-6419,
14
, pp.
109
115
.
32.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
Mcculloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
, pp.
455
467
.
33.
Taber
,
L. A.
, 1995, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
487
545
.
34.
Johnson
,
B. E.
, and
Hoger
,
A.
, 1995, “
The Use of a Virtual Configuration in Formulating Constitutive Equations for Residually Stressed Elastic Materials
,”
J. Elast.
0374-3535,
41
, pp.
177
215
.
35.
Hoger
,
A.
, 1997, “
Virtual Configurations and Constitutive Equations for Residually Stressed Bodies With Material Symmetry
,”
J. Elast.
0374-3535,
48
, pp.
125
144
.
36.
Stålhand
,
J.
,
Klarbring
,
A.
, and
Karlsson
,
M.
, 2004, “
Towards In Vivo Aorta Material Identification and Stress Estimation
,”
Biomech. Model. Mechanobiol.
1617-7959,
2
, pp.
169
186
.
37.
Olsson
,
T.
,
Stålhand
,
J.
, and
Klarbring
,
A.
, 2006, “
Modeling Initial Strain Distribution in Soft Tissues With Application to Arteries
,”
Biomech. Model. Mechanobiol.
1617-7959,
5
, pp.
27
38
.
38.
Stålhand
,
J.
, 2009, “
Determination of Human Arterial Wall Parameters From Clinical Data
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
, pp.
141
148
.
39.
Kroon
,
M.
, and
Holzapfel
,
G. A.
, 2008, “
A New Constitutive Model for Multi-Layered Collagenous Tissues
,”
J. Biomech.
0021-9290,
41
, pp.
2766
2771
.
40.
Kroon
,
M.
, and
Holzapfel
,
G. A.
, 2008, “
Estimation of the Distribution of Anisotropic, Elastic Properties and Wall Stresses of Saccular Cerebral Aneurysms by Inverse Analysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
, pp.
807
825
.
41.
Canham
,
P. B.
,
Finlay
,
H. M.
, and
Tong
,
S. Y.
, 1996, “
Stereological Analysis of the Layered Collagen of Human Intracranial Aneurysms
,”
J. Microsc.
0022-2720,
183
, pp.
170
180
.
42.
Frosen
,
J.
,
Piippo
,
A.
,
Paetau
,
A.
,
Kangasniemi
,
M.
,
Niemela
,
M.
,
Hernesniemi
,
J.
, and
Jaaskelainen
,
J.
, 2004, “
Remodeling of Saccular Cerebral Artery Aneurysm Wall Is Associated With Rupture: Histological Analysis of 24 Unruptured and 42 Ruptured Cases
,”
Stroke
0039-2499,
35
(
10
), pp.
2287
2293
.
43.
Kataoka
,
K.
,
Taneda
,
M.
,
Asai
,
T.
,
Kinoshita
,
A.
,
Ito
,
M.
, and
Kuroda
,
R.
, 1999, “
Structural Fragility and Inflammatory Response of Ruptured Cerebral Aneurysms: A Comparative Study Between Ruptured and Unruptured Cerebral Aneurysms
,”
Stroke
0039-2499,
30
(
7
), pp.
1396
1401
.
44.
Taylor
,
R. L.
, 2003, FEAP User Manual, v7.5.
45.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1970,
Large Elastic Deformations
, 2nd ed.,
Clarendon
,
Oxford
.
46.
Doyle
,
T. C.
, and
Ericksen
,
J. L.
, 1956, “
Nonlinear Elasticity
,”
Adv. Appl. Mech.
0065-2156,
4
, pp.
53
115
.
47.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
, 2005, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
0036-1445,
47
, pp.
99
131
.
48.
Hayakawa
,
M.
,
Katada
,
K.
,
Anno
,
H.
,
Imizu
,
S.
,
Hayashi
,
J.
,
Irie
,
K.
,
Negoro
,
M.
,
Kato
,
Y.
,
Kanno
,
T.
, and
Sano
,
H.
, 2005, “
CT Angiography With Electrocardiographically Gated Reconstruction for Visualizing Pulsation of Intracranial Aneurysms: Identification of Aneurysmal Protuberance Presumably Associated With Wall Thinning
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
(
6
), pp.
1366
1369
.
49.
Yaghmai
,
V.
,
Rohany
,
M.
,
Shaibani
,
A.
,
Huber
,
M.
,
Soud
,
H.
,
Russell
,
E. J.
, and
Walker
,
M. T.
, 2007, “
Pulsatility Imaging of Saccular Aneurysm Model by 64-Slice CT With Dynamic Multiscan Technique
,”
J. Vasc. Interv. Radiol.
1051-0443,
18
(
6
), pp.
785
788
.
50.
Zhang
,
C.
,
Craene
,
M.
,
Villa-Uriol
,
M.
,
Pozo
,
J. M.
,
Bijnens
,
B. H.
, and
Frangi
,
A. F.
, 2009, “
Estimating Continuous 4D Wall Motion of Cerebral Aneurysms From 3D Rotational Angiography
,”
Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part I
,
Springer-Verlag
,
London
, pp.
140
147
.
51.
Zhang
,
C.
,
Villa-Uriol
,
M. C.
,
De Craene
,
M.
,
Pozo
,
J.
, and
Frangi
,
A.
, 2009, “
Morphodynamic Analysis of Cerebral Aneurysm Pulsation From Time-Resolved Rotational Angiography
,”
IEEE Trans. Med. Imaging
0278-0062,
28
, pp.
1105
1116
.
52.
Oubel
,
E.
,
Cebral
,
J. R.
,
De Craene
,
M.
,
Blanc
,
R.
,
Blasco
,
J.
,
Macho
,
J.
,
Putman
,
C. M.
, and
Frangi
,
A. F.
, 2010, “
Wall Motion Estimation in Intracranial Aneurysms
,”
Physiol. Meas.
,
31
(
9
), pp.
1119
1135
.
53.
Patel
,
V.
,
Hoffmann
,
K. R.
,
Ionita
,
C. N.
,
Keleshis
,
C.
,
Bednarek
,
D. R.
, and
Rudin
,
R.
, 2008, “
Rotational Micro-CT Using a Clinical C-Arm Angiography Gantry
,”
Med. Phys.
0094-2405,
35
, pp.
4757
4764
.
54.
Raabe
,
A.
,
Beck
,
J.
,
Gerlach
,
R.
,
Zimmermann
,
M.
, and
Seifert
,
V.
, 2003, “
Near-Infrared Indocyanine Green Video Angiography: A New Method for Intraoperative Assessment of Vascular Flow
,”
Neurosurgery
0148-396X,
52
, pp.
132
139
.
You do not currently have access to this content.