During orthopaedic surgery elevated temperatures due to cutting can result in bone injury, contributing to implant failure or delayed healing. However, how resulting temperatures are experienced throughout bone tissue and cells is unknown. This study uses a combination of experiments (forward-looking infrared (FLIR)) and multiscale computational models to predict thermal elevations in bone tissue and cells. Using multiple regression analysis, analytical expressions are derived allowing a priori prediction of temperature distribution throughout bone with respect to blade geometry, feed-rate, distance from surface, and cooling time. This study offers an insight into bone thermal behavior, informing innovative cutting techniques that reduce cellular thermal damage.

References

1.
Alam
,
K.
,
Mitrofanov
,
A. V.
, and
Silberschmidt
,
V. V.
,
2009
, “
Finite Element Analysis of Forces of Plane Cutting of Cortical Bone
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
738
743
.10.1016/j.commatsci.2009.04.035
2.
Alam
,
K.
,
Mitrofanov
,
A. V.
, and
Silberschmidt
,
V. V.
,
2010
, “
Thermal Analysis of Orthogonal Cutting of Cortical Bone Using Finite Element Simulations
,”
Int. J. Exp. Comput. Biomech.
,
1
(
3
), pp.
236
251
.10.1504/IJECB.2010.035259
3.
Karmani
,
S.
,
2006
, “
The Thermal Properties of Bone and the Effects of Surgical Intervention
.”
Curr. Orthop.
,
20
(
1
), pp.
52
58
.10.1016/j.cuor.2005.09.011
4.
Krause
,
W. R.
,
Bradbury
,
D. W.
,
Kelly
,
J. E.
, and
Lunceford
,
E. M.
,
1982
, “
Temperature Elevations in Orthopaedic Cutting Operations
,”
J. Biomech.
,
15
(
4
), pp.
267
275
.10.1016/0021-9290(82)90173-7
5.
Li
,
S.
,
Chien
,
S.
, and
Brånemark
,
P.-I.
,
1999
, “
Heat Shock-Induced Necrosis and Apoptosis in Osteoblasts
,”
J. Orthop. Res.
,
17
(
6
), pp.
891
899
.10.1002/jor.1100170614
6.
Lundskog
,
J.
,
1972
, “
Heat and Bone Tissue. An Experimental Investigation of the Thermal Properties of Bone and Threshold Levels for Thermal Injury
,”
Scand. J. Plast. Reconstr. Surgery
,
9
: pp.
1
80
.
7.
Eriksson
,
A.
,
Albrektsson
,
T.
,
Grane
,
B.
, and
McQueen
,
D.
,
1982
, “
Thermal Injury to Bone: A Vital-Microscopic Description of Heat Effects
,”
Int. J. Oral Surg.
,
11
(
2
), pp.
115
121
.10.1016/S0300-9785(82)80020-3
8.
Eriksson
,
A. R.
and
Albrektsson
,
T.
,
1983
, “
Temperature Threshold Levels for Heat-Induced Bone Tissue Injury: A Vital-Microscopic Study in the Rabbit
,”
J. Prosthet. Dent.
,
50
, pp.
101
106
.10.1016/0022-3913(83)90174-9
9.
Eriksson
,
A. R.
,
Albrektsson
,
T.
, and
Magnusson
,
B.
,
1984
, “
Assessment of Bone Viability After Heat Trauma: A Histological, Histochemical and Vital Microscopic Study in the Rabbit
,”
Scand. J. Plast. Reconstr. Surg. Hand Surg.
,
18
(
3
), pp.
261
268
.10.3109/02844318409052849
10.
Leucht
,
P.
,
Lam
,
K.
,
Kim
,
J-B.
,
Mackanos
,
M. A.
,
Simanovskii
,
D. M.
,
Longaker
,
M. T.
,
Contag
,
C. H.
,
Schwettman
,
H. A.
, and
Helms
,
J. A.
,
2007
, “
Accelerated Bone Repair After Plasma Laser Corticotomies
,”
Ann. Surg
,
246
(
1
), pp.
140
150
.10.1097/01.sla.0000258559.07435.b3
11.
Stelzle
,
F.
,
Frenkel
,
C.
,
Riemann
,
M.
,
Knipfer
,
C.
,
Stockmann
,
P.
, and
Nkenke
,
E.
,
2012
, “
The Effect of Load on Heat Production, Thermal Effects and Expenditure of Time During Implant Site Preparation—An Experimental Ex Vivo Comparison Between Piezosurgery and Conventional Drilling
,”
Clin. Oral Implants Res.
, pp.
1
9
.
12.
Albrektsson
,
T.
,
Brånemark
,
P.
,
Hansson
,
H. A.
, and
Lindström
,
J.
,
1981
, “
Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man
,”
Acta Orthop.
,
52
(
2
): pp.
155
170
.10.3109/17453678108991776
13.
Albrektsson
,
T.
,
1980
, “
The Healing of Autologous Bone Grafts After Varying Degrees of Surgical Trauma. A Microscopic and Histochemical Study in the Rabbit
J Bone Jt. Surg., Br. Vol.
,
62-B
(
3
), pp.
403
410
.
14.
Dolan
,
E. B.
,
Haugh
,
M. G.
,
Tallon
,
D.
,
Casey
,
C.
, and
McNamara
,
L. M.
,
2012
, “
Heat-Shock-Induced Cellular Responses to Temperature Elevations Occurring During Orthopaedic Cutting
,”
J. R. Soc., Interface
,
9
(
77
), pp. 3503–3513.
15.
Vaughan
,
T. J.
,
McCarthy
,
C. T.
, and
McNamara
,
L. M.
,
2012
, “
A Three-Scale Finite Element Investigation Into the Effects of Tissue Mineralisation and Lamellar Organisation in Human Cortical and Trabecular Bone
,”
J. Mech. Beh. Biomed. Mater.
,
12
, pp.
50
62
.10.1016/j.jmbbm.2012.03.003
16.
Vaughan
,
T. J.
, and
McNamara
,
L. M.
,
2012
, “
Multiscale Modelling of Bone: Understanding Tissue Mechanics and Cell Mechanobiology
,”
J. Biomech.
,
45
, p.
S473
.10.1016/S0021-9290(12)70474-8
17.
Hillery
,
M. T.
, and
Shuaib
,
I.
,
1999
, “
Temperature Effects in the Drilling of Human and Bovine Bone
,”
J. Mater. Process. Technol.
,
92-93
, pp.
302
308
.10.1016/S0924-0136(99)00155-7
18.
Sharawy
,
M.
,
Misch
,
C. E.
,
Weller
,
N.
, and
Tehemar
,
S.
,
2002
, “
Heat Generation During Implant Drilling: The Significance of Motor Speed
,”
J. Oral Maxillofac. Surg.
,
60
(
10
), pp.
1160
1169
.10.1053/joms.2002.34992
19.
Davidson
,
S. R. H.
, and
James
,
D. F.
,
2000
, “
Measurement of Thermal Conductivity of Bovine Cortical Bone
,”
Med. Eng. Phys.
,
22
(
10
), pp.
741
747
.10.1016/S1350-4533(01)00003-0
20.
Augustin
,
G.
,
Davila
,
S.
,
Mihoci
,
K.
,
Udiljak
,
T.
,
Vedrina
,
D. S.
, and
Antabak
,
A.
,
2008
, “
Thermal Osteonecrosis and Bone Drilling Parameters Revisited
,”
Arch. Orthop. Trauma Surg.
,
128
(
1
), pp.
71
77
.10.1007/s00402-007-0427-3
21.
Sugita
,
N.
,
Osa
,
T.
, and
Mitsuishi
,
M.
,
2009
, “
Analysis and Estimation of Cutting-Temperature Distribution During End Milling in Relation to Orthopedic Surgery
,”
Med.Eng. Phys.
,
31
(
1
), pp.
101
107
.10.1016/j.medengphy.2008.05.001
22.
Baker
,
R.
,
Whitehouse
,
M.
,
Kilshaw
,
M.
,
Pabbruwe
,
M.
,
Spencer
,
R.
,
Blom
,
A.
, and
Bannister
,
G.
,
2011
, “
Maximum Temperatures of 89 °C Recorded During the Mechanical Preparation of 35 Femoral Heads for Resurfacing
,”
Acta Orthop.
,
82
(
6
), pp.
669
673
.10.3109/17453674.2011.636681
23.
Dinwiddie
,
R. B.
, and
Steffner
,
T. E.
,
2007
, “
Thermal Imaging of Medical Saw Blades and Guides
, InfraMation Infrared Camera Applications Conference, 2007, Las Vegas, NV. October 15–19, pp.
245
254
.
24.
Augustin, G., Davila, S., Udiljak, T., Vedrina, D. S., and Bagatin, D.,
2009
, “
Determination of Spatial Distribution of Increase in Bone Temperature During Drilling by Infrared Thermography: Preliminary Report
,”
Arch. Orthop. Trauma Surg.
,
129
(
5
), pp.
703
709
.10.1007/s00402-008-0630-x
25.
Lee
,
J.
,
Rabin
,
Y.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A New Thermal Model for Bone Drilling With Applications to Orthopaedic Surgery
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1234
1244
.10.1016/j.medengphy.2011.05.014
26.
Eriksson
,
R. A.
, and
Albrektsson
,
Y.
,
1984
, “
The Effect of Heat on Bone Regeneration: An Experimental Study in the Rabbit Using the Bone Growth Chamber
,”
J. Oral Maxillofac. Surg.
,
42
(
11
), pp.
705
711
.10.1016/0278-2391(84)90417-8
27.
Kennedy
,
O. D.
,
2007
, “
The Effect of Bone Turnover on Bone Quality and Material Properties
,” Trinity College Dublin, Dublin.
28.
Karaca
,
F.
,
Aksakal
,
B.
, and
Kom
,
M.
,
2011
, “
Influence of Orthopaedic Drilling Parameters on Temperature and Histopathology of Bovine Tibia: An In Vitro Study
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1221
1227
.10.1016/j.medengphy.2011.05.013
29.
Stumme
,
L. D.
,
Baldini
,
T. H.
,
Jonassen
,
E. A.
, and
Bach
,
J. M.
,
2003
, “
Emissivity of Bone
,”
Summer Bioengineering Conference
,
2003
, Key Biscayne, FL, June 25–29, pp. 1013–1014.
30.
Bialkowski
,
S. E.
,
1996
,
Photothermal Spectroscopy Methods for Chemical Analysis
, Vol.
134
,
Wiley
,
New York
.
31.
Dada
,
O. O.
,
Feist
,
P. E.
, and
Dovichi
,
N. J.
,
2011
, “
Thermal Diffusivity Imaging With the Thermal Lens Microscope
,”
Appl. Opt.
,
50
(
34
), pp.
6336
6342
.10.1364/AO.50.006336
32.
Vaughan
,
T. J.
,
Verbruggen
,
S. W.
, and
McNamara
,
L. M.
,
2013
, “
Are All Osteocytes Equal? Multiscale Modelling of Cortical Bone to Characterise the Mechanical Stimulation of Osteocytes
,”
Int. J. Numerical Methods Biomed. Eng.
,
29
(
12
), pp.
1361
1372
.10.1002/cnm.2578
33.
Particelli
,
F.
,
Mecozzi
,
L.
,
Beraudi
,
A.
,
Montesi
,
M.
,
Baruffaldi
,
F.
, and
Viceconti
,
M.
,
2012
, “
A Comparison Between Micro-CT and Histology for the Evaluation of Cortical Bone: Effect of Polymethylmethacrylate Embedding on Structural Parameters
,”
J. Microsc.
,
245
(
3
), p.
302
310
.10.1111/j.1365-2818.2011.03573.x
34.
Verbruggen
,
S. W.
,
Vaughan
,
T. J.
, and
McNamara
,
L. M.
,
2012
, “
Strain Amplification in Bone Mechanobiology: A Computational Investigation of the In Vivo Mechanics of Osteocytes
,”
J. R. Soc., Interface
,
9
(
75
), pp.
2735
2744
.10.1098/rsif.2012.0286
35.
Lin
,
Y.
and
Xu
,
S.
,
2011
, “
AFM Analysis of the Lacunar-Canalicular Network in Demineralized Compact Bone
,”
J. Microsc.
,
241
(
3
), p.
291
302
.10.1111/j.1365-2818.2010.03431.x
36.
Rockwood
,
C. A.
,
Bucholz
,
R. W.
,
Court-Brown
,
C. M.
,
Heckman
,
J. D.
, and
Tornetta
,
P.
,
2006
,
Rockwood and Green's Fractures in Adults
,
Lippincott Williams and Wilkins
,
Philadelphia
, PA.
37.
Morris
,
M.
and
Kelly
,
P.
,
1980
, “
Use of Tracer Microspheres to Measure Bone Blood Flow in Conscious Dogs
,”
Calcif. Tissue Int.
,
32
(
1
), pp.
69
76
.10.1007/BF02408523
38.
Reichert
,
I.
,
McCarthy
,
I.
, and
Hughes
,
S.
,
1995
, “
The Acute Vascular Response to Intramedullary Reaming. Microsphere Estimation of Blood Flow in the Intact Ovine Tibia
,”
J. Bone Jt. Surg., Br.
Vol.,
77–B
(
3
), pp.
490
493
.
39.
Davidson
,
S. R. H.
, and
James
,
D. F.
,
2003
, “
Drilling in Bone: Modeling Heat Generation and Temperature Distribution
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
305
314, 2003
.10.1115/1.1535190
40.
Augustina
,
G.
,
Zigmana
,
T.
,
Davilaa
,
S.
,
Udilljakb
,
T.
,
Staroveskib
,
T.
,
Brezakb
,
D.
, and
Babic
,
S.
, “
Cortical Bone Drilling and Thermal Osteonecrosis
,”
Clin. Biomech.
,
27
(
4
), pp.
313
325
.10.1016/j.clinbiomech.2011.10.010
41.
Sugita
,
N.
,
Osa
,
T.
,
Aoki
,
R.
, and
Mitsuishi
,
M.
,
2009
, “
A New Cutting Method for Bone Based on Its Crack Propagation Characteristics
,”
CIRP Ann.
,
58
(
1
), pp.
113
118
.10.1016/j.cirp.2009.03.057
42.
Rath Bonivtch
,
A.
,
Bonewald
,
L. F.
, and
Nicolella
,
D. P.
,
2007
, “
Tissue Strain Amplification at the Osteocyte Lacuna: A Microstructural Finite Element Analysis
,”
J. Biomech.
,
40
(
10
), pp.
2199
2206
.10.1016/j.jbiomech.2006.10.040
43.
Mulcahy
,
L. E.
,
Taylor
,
D.
,
Lee
,
T. C.
, and
Duffy
,
G. P.
,
2011
, “
RANKL and OPG Activity is Regulated by Injury Size in Networks of Osteocyte-Like Cells
,”
Bone
,
48
(
2
), pp.
182
188
.10.1016/j.bone.2010.09.014
44.
Kennedy
,
O. D.
,
Herman
,
B. C.
,
Laudier
,
D. M.
,
Majeskaa
,
R. J.
,
Sun
,
H. B.
, and
Schaffler
,
M. B.
,
2012
, “
Activation of Resorption in Fatigue-Loaded Bone Involves Both Apoptosis and Active Pro-Osteoclastogenic Signaling by Distinct Osteocyte Populations
,”
Bone
,
50
(
5
), pp.
1115
1122
.10.1016/j.bone.2012.01.025
45.
Chato
,
J. C.
,
1990
, Fundamentals of Bioheat Transfer,
Thermal Dosimetry and Treatment Planning
, Springer Berlin Heidelberg.10.1007/978-3-642-48712-5_1
46.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
,
1969
, “
Weight, Volume, and Center of Mass of Segments of the Human Body
,” Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.
47.
McIntosh
,
R. L.
, and
Anderson
,
V.
,
2010
, “
A Comprehensive Tissue Properties Database Provided for the Thermal Assessment of a Human at Rest
,”
Biophys. Rev. Lett.
,
5
(
03
), pp.
129
151
.10.1142/S1793048010001184
48.
Woodard
,
H. Q.
, and
White
,
D. R.
, “
The Composition of Body Tissues
,”
Br. J. Radiol.
,
59
(
708
), pp.
1209
1218
.10.1259/0007-1285-59-708-1209
49.
Challoner
,
A. R.
, and
Powell
,
R. W.
,
1956
, “
Thermal Conductivities of Liquids: New Determinations for Seven Liquids and Appraisal of Existing Values
,”
Proc. R. Soc. London, Ser. A
,
238
(
1212
), pp.
90
106
.10.1098/rspa.1956.0205
50.
Kell
,
G. S.
,
1967
, “
Precise Representation of Volume Properties of Water at One Atmosphere
,”
J. Chem. Eng. Data
,
12
(
1
), pp.
66
69
.10.1021/je60032a018
51.
Manya
,
J. J.
,
Antal
,
M. J.
, Jr.,
Kinoshita
,
C. K.
, and
Masutani
,
S. M.
,
2011
, “
Specific Heat Capacity of Pure Water at 4.0 MPa between 298.15 and 465.65 K,
Ind. Eng. Chem. Res.
,
50
(
10
), pp.
6470
6484
.10.1021/ie102462g
You do not currently have access to this content.