Abstract

Stress shielding due to difference in stiffness of bone and implant material is one among the foremost causes of loosening and failure of load-bearing implants. Thus far, femoral geometry has been given priority for the customization of total hip joint replacement (THR) implant design. This study, for the first time, demonstrates the key role of bone condition and subject-weight on the customization of stiffness and design of the femoral stem. In particular, internal hollowness was incorporated to reduce the implant stiffness and such designed structure has been customized based on subject parameters, including bone condition and bodyweight. The primary aim was to tailor these parameters to achieve close to natural strain distribution at periprosthetic bone and to reduce interfacial bone loss over time. The maintenance of interfacial bone density over time has been studied here through analysis of bone remodeling (BR). For normal bodyweight, the highest hollowness exhibited clinically relevant biomechanical response, for all bone conditions. However, for heavier subjects, consideration of bone quality was found to be essential as higher hollowness induced bone failure in weaker bones and implant failure in stronger bones. Moreover, for stronger bone, thinner medial wall was found to reduce bone resorption over time on the proximo-lateral zone of stress shielding, while lateral thinning was found advantageous for weaker bones. The findings of this study are likely to facilitate designing of femoral stems for achieving better physiological outcomes and enhancement of the quality of life of patients undergoing THR surgery.

References

References
1.
Kraaij
,
G.
,
Zadpoor
,
A. A.
,
Tuijthof
,
G. J.
,
Dankelman
,
J.
,
Nelissen
,
R. G.
, and
Valstar
,
E. R.
,
2014
, “
Mechanical Properties of Human Bone–Implant Interface Tissue in Aseptically Loose Hip Implants
,”
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
59
68
.10.1016/j.jmbbm.2014.06.010
2.
Chatterjee, S. , 2017, “Subject-Specific Stiffness Customization of Cementless Femoral Stem for Optimal Interfacial Bone Growth,” Ph.D. thesis, Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India.
3.
Yamako
,
G.
,
Chosa
,
E.
,
Zhao
,
X.
,
Totoribe
,
K.
,
Watanabe
,
S.
,
Sakamoto
,
T.
, and
Nakane
,
N.
,
2014
, “
Load-Transfer Analysis After Insertion of Cementless Anatomical Femoral Stem Using Pre-and Post-Operative CT Images Based Patient-Specific Finite Element Analysis
,”
Med. Eng. Phys.
,
36
(
6
), pp.
694
700
.10.1016/j.medengphy.2014.02.018
4.
Chen
,
W.-P.
,
Tai
,
C.-L.
,
Lee
,
M. S.
,
Lee
,
P.-C.
,
Liu
,
C.-P.
, and
Shih
,
C.-H.
,
2004
, “
Comparison of Stress Shielding Among Different Cement Fixation Modes of Femoral Stem in Total Hip Arthroplasty—A Three-Dimensional Finite Element Analysis
,”
J. Med. Biol. Eng.
,
24
(
4
), pp.
183
187
.http://www.jmbe.org.tw/files/146/public/146-711-1-PB.pdf
5.
Ridzwan
,
M.
,
Shuib
,
S.
,
Hassan
,
A.
,
Shokri
,
A.
, and
Ibrahim
,
M. M.
,
2007
, “
Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review
,”
J. Med. Sci.
,
7
(
3
), pp.
460
467
.10.3923/jms.2007.460.467
6.
Ruimerman
,
R.
,
Hilbers
,
P.
,
Van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2005
, “
A Theoretical Framework for Strain-Related Trabecular Bone Maintenance and Adaptation
,”
J. Biomech.
,
38
(
4
), pp.
931
941
.10.1016/j.jbiomech.2004.03.037
7.
Lindahl
,
H.
,
2007
, “
Epidemiology of Periprosthetic Femur Fracture Around a Total Hip Arthroplasty
,”
Injury
,
38
(
6
), pp.
651
654
.10.1016/j.injury.2007.02.048
8.
Kärrholm
,
J.
,
Anderber
,
C.
,
Snorrason
,
F.
,
Thanner
,
J.
,
Langeland
,
N.
,
Malchau
,
H.
, and
Herberts
,
P.
,
2002
, “
Evaluation of a Femoral Stem With Reduced Stiffness: A Randomized Study With Use of Radiostereometry and Bone Densitometry
,”
JBJS
,
84
(
9
), pp.
1651
1658
.10.2106/00004623-200209000-00020
9.
Molli
,
R. G.
,
Lombardi
,
A. V.
, Jr.
,
Berend
,
K. R.
,
Adams
,
J. B.
, and
Sneller
,
M. A.
,
2012
, “
A Short Tapered Stem Reduces Intraoperative Complications in Primary Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
470
(
2
), pp.
450
461
.10.1007/s11999-011-2068-7
10.
Miyatake
,
K.
,
Jinno
,
T.
,
Koga
,
D.
,
Yamauchi
,
Y.
,
Muneta
,
T.
, and
Okawa
,
A.
,
2015
, “
Comparison of Different Materials and Proximal Coatings Used for Femoral Components in One-Stage Bilateral Total Hip Arthroplasty
,”
J. Arthroplasty
,
30
(
12
), pp.
2237
2241
.10.1016/j.arth.2015.06.019
11.
Petis
,
S. M.
,
Howard
,
J. L.
,
McAuley
,
J. P.
,
Somerville
,
L.
,
McCalden
,
R. W.
, and
MacDonald
,
S. J.
,
2015
, “
Comparing the Long-Term Results of Two Uncemented Femoral Stems for Total Hip Arthroplasty
,”
J. Arthroplasty
,
30
(
5
), pp.
781
785
.10.1016/j.arth.2014.07.024
12.
Hutt
,
J.
,
Harb
,
Z.
,
Gill
,
I.
,
Kashif
,
F.
,
Miller
,
J.
, and
Dodd
,
M.
,
2014
, “
Ten Year Results of the Collum Femoris Preserving Total Hip Replacement: A Prospective Cohort Study of Seventy Five Patients
,”
Int. Orthop.
,
38
(
5
), pp.
917
922
.10.1007/s00264-013-2212-y
13.
van Oldenrijk
,
J.
,
Molleman
,
J.
,
Klaver
,
M.
,
Poolman
,
R. W.
, and
Haverkamp
,
D.
,
2014
, “
Revision Rate After Short-Stem Total Hip Arthroplasty: A Systematic Review of 49 Clinical Studies
,”
Acta Orthop.
,
85
(
3
), pp.
250
258
.10.3109/17453674.2014.908343
14.
Morishima
,
T.
,
Ginsel
,
B. L.
,
Choy
,
G. G.
,
Wilson
,
L. J.
,
Whitehouse
,
S. L.
, and
Crawford
,
R. W.
,
2014
, “
Periprosthetic Fracture Torque for Short Versus Standard Cemented Hip Stems: An Experimental In Vitro Study
,”
J. Arthroplasty
,
29
(
5
), pp.
1067
1071
.10.1016/j.arth.2013.10.016
15.
Albrecht Ender
,
S.
,
Machner
,
A.
,
Pap
,
G.
,
Hubbe
,
J.
,
Graßhoff
,
H.
, and
Neumann
,
H.-W.
,
2007
, “
Cementless CUT Femoral Neck Prosthesis: Increased Rate of Aseptic Loosening After 5 Years
,”
Acta Orthop.
,
78
(
5
), pp.
616
621
.10.1080/17453670710014301
16.
Gilbert
,
R. E.
,
Salehi-Bird
,
S.
,
Gallacher
,
P. D.
, and
Shaylor
,
P.
,
2009
, “
The Mayo Conservative Hip: Experience From a District General Hospital
,”
Hip Int.
,
19
(
3
), pp.
211
214
.10.1177/112070000901900304
17.
Toth
,
K.
,
Mécs
,
L.
, and
Kellermann
,
P.
,
2010
, “
Early Experience With the DePuy Proxima™ Short Stem in Total Hip Arthroplasty
,”
Acta Orthop. Belg.
,
76
(
5
), p.
613
.https://www.researchgate.net/publication/49664561_Early_experience_with_the_DePuy_Proxima_short_stem_in_total_hip_arthroplasty
18.
Ruben
,
R. B.
,
Fernandes
,
P. R.
, and
Folgado
,
J.
,
2012
, “
On the Optimal Shape of Hip Implants
,”
J. Biomech.
,
45
(
2
), pp.
239
246
.10.1016/j.jbiomech.2011.10.038
19.
Sluimer
,
J. C.
,
Hoefnagels
,
N. H.
,
Emans
,
P. J.
,
Kuijer
,
R.
, and
Geesink
,
R. G.
,
2006
, “
Comparison of Two Hydroxyapatite-Coated Femoral Stems: Clinical, Functional, and Bone Densitometry Evaluation of Patients Randomized to a Regular or Modified Hydroxyapatite-Coated Stem Aimed at Proximal Fixation
,”
J. Arthroplasty
,
21
(
3
), pp.
344
352
.10.1016/j.arth.2005.06.015
20.
Fernandes
,
P.
,
Folgado
,
J.
, and
Ruben
,
R.
,
2004
, “
Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
1
), pp.
51
61
.10.1080/10255840410001661637
21.
Ruben
,
R. B.
,
Folgado
,
J.
, and
Fernandes
,
P. R.
,
2007
, “
Three-Dimensional Shape Optimization of Hip Prostheses Using a Multicriteria Formulation
,”
Struct. Multidiscip. Optim.
,
34
(
3
), pp.
261
275
.10.1007/s00158-006-0072-4
22.
Virulsri
,
C.
,
Tangpornprasert
,
P.
, and
Romtrairat
,
P.
,
2015
, “
Femoral Hip Prosthesis Design for Thais Using Multi-Objective Shape Optimization
,”
Mater. Des.
,
68
, pp.
1
7
.10.1016/j.matdes.2014.11.027
23.
Mattheck
,
C.
,
Vorberg
,
U.
, and
Kranz
,
C.
,
1990
, “
Effects of Hollow Shaft Endoprosthesis on Stress Distribution in Cortical Bone
,”
Biomed. Tech. Biomed. Eng.
,
35
(
12
), pp.
316
319
.10.1515/bmte.1990.35.12.316
24.
Schmidt
,
J.
, and
Hackenbroch
,
M. H.
,
1994
, “
The Cenos Hollow Stem in Total Hip Arthroplasty: First Experiences in a Prospective Study
,”
Arch. Orthop. Trauma Surg.
,
113
(
3
), pp.
117
120
.10.1007/BF00441616
25.
Boobalan
,
V.
, and
Shankar
,
S.
,
2013
, “
Investigation on Various Proximal Femoral Stem Shapes for Human Hip Prosthesis Using Finite Element Concepts
,”
Trends Biomater. Artif. Organs
, 27(
4
), p.
27
.https://www.researchgate.net/publication/283318818_Investigation_on_various_proximal_femoral_stem_shapes_for_human_hip_prosthesis_using_finite_element_concepts
26.
Yang
,
C.-T.
,
Wei
,
H.-W.
,
Kao
,
H.-C.
, and
Cheng
,
C.-K.
,
2009
, “
Test of Hip Stem for Medullary Revascularization
,”
Med. Eng. Phys.
,
31
(
8
), pp.
994
1001
.10.1016/j.medengphy.2009.06.001
27.
Gross
,
S.
, and
Abel
,
E. W.
,
2001
, “
A Finite Element Analysis of Hollow Stemmed Hip Prostheses as a Means of Reducing Stress Shielding of the Femur
,”
J. Biomech.
,
34
(
8
), pp.
995
1003
.10.1016/S0021-9290(01)00072-0
28.
Nicolella
,
D. P.
,
Thacker
,
B. H.
,
Katoozian
,
H.
, and
Davy
,
D. T.
,
2006
, “
The Effect of Three-Dimensional Shape Optimization on the Probabilistic Response of a Cemented Femoral Hip Prosthesis
,”
J. Biomech.
,
39
(
7
), pp.
1265
1278
.10.1016/j.jbiomech.2005.03.010
29.
Jun
,
Y.
, and
Choi
,
K.
,
2010
, “
Design of Patient-Specific Hip Implants Based on the 3D Geometry of the Human Femur
,”
Adv. Eng. Software
,
41
(
4
), pp.
537
547
.10.1016/j.advengsoft.2009.10.016
30.
Tsukada
,
S.
, and
Wakui
,
M.
,
2016
, “
A Case Series of Total Hip Arthroplasty Using Cementless Hip Stem Customized for Patients of a Specific Race: 10-to 15-Year Results
,”
J. Arthroplasty
,
31
(
1
), pp.
190
193
.10.1016/j.arth.2015.07.036
31.
Nixon
,
M.
,
Taylor
,
G.
,
Sheldon
,
P.
,
Iqbal
,
S.
, and
Harper
,
W.
,
2007
, “
Does Bone Quality Predict Loosening of Cemented Total Hip Replacements?
,”
Bone Jt. J.
,
89-B
(
10
), pp.
1303
1308
.10.1302/0301-620X.89B10.19038
32.
Chatterjee
,
S.
,
Kobylinski
,
S.
, and
Basu
,
B.
,
2018
, “
Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone
,”
ASME J. Biomech. Eng.
,
140
(
10
), p.
101014
.10.1115/1.4040249
33.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus–Density Relationships Depend on Anatomic site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
34.
Anderson
,
D. E.
, and
Madigan
,
M. L.
,
2013
, “
Effects of Age-Related Differences in Femoral Loading and Bone Mineral Density on Strains in the Proximal Femur During Controlled Walking
,”
J. Appl. Biomech.
,
29
(
5
), pp.
505
516
.10.1123/jab.29.5.505
35.
Noyama
,
Y.
,
Miura
,
T.
,
Ishimoto
,
T.
,
Itaya
,
T.
,
Niinomi
,
M.
, and
Nakano
,
T.
,
2012
, “
Bone Loss and Reduced Bone Quality of the Human Femur After Total Hip Arthroplasty Under Stress-Shielding Effects by Titanium-Based Implant
,”
Mater. Trans.
,
53
(
3
), pp.
565
570
.10.2320/matertrans.M2011358
36.
Bitsch
,
R. G.
,
Jäger
,
S.
,
Lürssen
,
M.
,
Loidolt
,
T.
,
Schmalzried
,
T. P.
, and
Clarius
,
M.
,
2010
, “
Influence of Bone Density on the Cement Fixation of Femoral Hip Resurfacing Components
,”
J. Orthop. Res.
,
28
(
8
), pp.
986
991
.10.1002/jor.21094
37.
Klotz
,
M. C.
,
Beckmann
,
N. A.
,
Bitsch
,
R. G.
,
Seebach
,
E.
,
Reiner
,
T.
, and
Jäger
,
S.
,
2014
, “
Bone Quality Assessment for Total Hip Arthroplasty With Intraoperative Trabecular Torque Measurements
,”
J. Orthop. Surg. Res.
,
9
(
1
), p.
109
.10.1186/s13018-014-0109-0
38.
Meding
,
J. B.
,
Galley
,
M. R.
, and
Ritter
,
M. A.
,
2010
, “
High Survival of Uncemented Proximally Porous-Coated Titanium Alloy Femoral Stems in Osteoporotic Bone
,”
Clin. Orthop. Relat. Res.
,
468
(
2
), pp.
441
447
.10.1007/s11999-009-1035-z
39.
Pal
,
B.
,
Gupta
,
S.
, and
New
,
A.
,
2009
, “
A Numerical Study of Failure Mechanisms in the Cemented Resurfaced Femur: Effects of Interface Characteristics and Bone Remodelling
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
4
), pp.
471
484
.10.1243/09544119JEIM488
40.
Massoud
,
S. N.
,
Hunter
,
J. B.
,
Holdsworth
,
B. J.
,
Wallace
,
W. A.
, and
Juliusson
,
R.
,
1997
, “
Juliusson R: Early Femoral Loosening in One Design of Cemented Hip Replacement
,”
J. Bone Jt. Surg. Br.
,
79-B
(
4
), pp.
603
608
.10.1302/0301-620X.79B4.0790603
41.
Cipriano
,
C. A.
,
Issack
,
P. S.
,
Beksaç
,
B.
,
Della Valle
,
A. G.
,
Sculco
,
T. P.
, and
Salvati
,
E. A.
,
2008
, “
Metallosis After Metal-on-Polyethylene Total Hip Arthroplasty
,”
Am. J. Orthop. (Belle Mead NJ)
,
37
(
2
), pp.
E18
E25
.
42.
Wagner
,
P.
,
Olsson
,
H.
,
Ranstam
,
J.
,
Robertsson
,
O.
,
Zheng
,
M. H.
, and
Lidgren
,
L.
,
2012
, “
Metal-on-Metal Joint Bearings and Hematopoetic Malignancy: A Review
,”
Acta Orthop.
,
83
(
6
), pp.
553
558
.10.3109/17453674.2012.747055
43.
Fisher
,
J.
,
2011
, “
Bioengineering Reasons for the Failure of Metal-on-Metal Hip Prostheses
,”
J. Bone Jt. Surg. Br.
,
93-B
(
8
), pp.
1001
1004
.10.1302/0301-620X.93B8.26936
44.
Langton
,
D.
,
Jameson
,
S.
,
Joyce
,
T.
,
Gandhi
,
J.
,
Sidaginamale
,
R.
,
Mereddy
,
P.
,
Lord
,
J.
, and
Nargol
,
A.
,
2011
, “
Accelerating Failure Rate of the ASR Total Hip Replacement
,”
J. Bone Jt. Surg. Br.
,
93-B
(
8
), pp.
1011
1016
.10.1302/0301-620X.93B8.26040
45.
Harris
,
W. H.
,
2012
, “
Edge Loading Has a Paradoxical Effect on Wear in Metal-on-Polyethylene Total Hip Arthroplasties
,”
Clin. Orthop. Relat. Res.
,
470
(
11
), pp.
3077
3082
.10.1007/s11999-012-2330-7
46.
Hua
,
X.
,
Wang
,
L.
,
Al-Hajjar
,
M.
,
Jin
,
Z.
,
Wilcox
,
R. K.
, and
Fisher
,
J.
,
2014
, “
Experimental Validation of Finite Element Modelling of a Modular Metal-on-Polyethylene Total Hip Replacement
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
7
), pp.
682
692
.10.1177/0954411914541830
47.
Stops
,
A.
,
Wilcox
,
R.
, and
Jin
,
Z.
,
2012
, “
Computational Modelling of the Natural Hip: A Review of Finite Element and Multibody Simulations
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
9
), pp.
963
979
.10.1080/10255842.2011.567983
48.
Suárez
,
D. R.
,
Weinans
,
H.
, and
van Keulen
,
F.
,
2012
, “
Bone Remodelling Around a Cementless Glenoid Component
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
903
913
.10.1007/s10237-011-0360-9
49.
Ghosh
,
R.
,
Mukherjee
,
K.
, and
Gupta
,
S.
,
2013
, “
Bone Remodelling Around Uncemented Metallic and Ceramic Acetabular Components
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
5
), pp.
490
502
.10.1177/0954411913478703
50.
Boyle
,
C.
, and
Kim
,
I. Y.
,
2011
, “
Comparison of Different Hip Prosthesis Shapes Considering Micro-Level Bone Remodeling and Stress-Shielding Criteria Using Three-Dimensional Design Space Topology Optimization
,”
J. Biomech.
,
44
(
9
), pp.
1722
1728
.10.1016/j.jbiomech.2011.03.038
51.
Aversa
,
R.
,
Petrescu
,
F. I.
,
Petrescu
,
R. V.
, and
Apicella
,
A.
,
2016
, “
Biofidel FEA Modeling of Customized Hybrid Biological Hip Joint Design—Part II: Flexible Stem Trabecular Prostheses
,”
Am. J. Biochem. Biotechnol.
, 12(4), pp.
277
285
.10.3844/ajbbsp.2016.277.285
52.
Rieger
,
J. S.
,
Jaeger
,
S.
,
Schuld
,
C.
,
Kretzer
,
J. P.
, and
Bitsch
,
R. G.
,
2013
, “
A Vibrational Technique for Diagnosing Loosened Total Hip Endoprostheses: An Experimental Sawbone Study
,”
Med. Eng. Phys.
,
35
(
3
), pp.
329
337
.10.1016/j.medengphy.2012.05.007
53.
Chatterjee, S., Dey, S., Majumder, S., Roychowdhury, A., and Datta, S. , 2019, “Computational Intelligence Based Design of Implant for Varying Bone Conditions,”
Int. J. Numer. Methods in Biomed. Eng.
, p. e3191.10.1002/cnm.3191
54.
Ten Broeke
,
R. H.
,
Tarala
,
M.
,
Arts
,
J. J.
,
Janssen
,
D. W.
,
Verdonschot
,
N.
, and
Geesink
,
R. G.
,
2014
, “
Improving Peri-Prosthetic Bone Adaptation Around Cementless Hip Stems: A Clinical and Finite Element Study
,”
Med. Eng. Phys.
,
36
(
3
), pp.
345
353
.10.1016/j.medengphy.2013.12.006
55.
Bougherara
,
H.
,
Bureau
,
M.
,
Campbell
,
M.
,
Vadean
,
A.
, and
Yahia
,
L. H.
,
2007
, “
Design of a Biomimetic Polymer‐Composite Hip Prosthesis
,”
J. Biomed. Mater. Res. Part A
,
82A
(
1
), pp.
27
40
.10.1002/jbm.a.31146
56.
Bougherara
,
H.
,
Zdero
,
R.
,
Shah
,
S.
,
Miric
,
M.
,
Papini
,
M.
,
Zalzal
,
P.
, and
Schemitsch
,
E. H.
,
2010
, “
A Biomechanical Assessment of Modular and Monoblock Revision Hip Implants Using FE Analysis and Strain Gage Measurements
,”
J. Orthop. Surg. Res.
,
5
(
1
), p.
34
.10.1186/1749-799X-5-34
57.
Jangid
,
V.
,
Singh
,
A. K.
, and
Mishra
,
A.
,
2019
, “
Wear Simulation of Artificial Hip Joints: Effect of Materials
,”
Mater. Today: Proc.
,
18
, pp.
3867
3875
.10.1016/j.matpr.2019.07.326
58.
Michailidis
,
N.
,
Stergioudi
,
F.
,
Omar
,
H.
, and
Tsipas
,
D.
,
2010
, “
FEM Modeling of the Response of Porous Al in Compression
,”
Comput. Mater. Sci.
,
48
(
2
), pp.
282
286
.10.1016/j.commatsci.2010.01.008
59.
Pekedis
,
M.
, and
Yildiz
,
H.
,
2011
, “
Comparison of Fatigue Behaviour of Eight Different Hip Stems: A Numerical and Experimental Study
,”
J. Biomed. Sci. Eng.
,
04
(
10
), pp.
643
650
.10.4236/jbise.2011.410080
60.
Rodriguez-Martinez
,
R.
,
Urriolagoitia-Sosa
,
G.
,
Torres-San Miguel
,
C. R.
,
Hernandez-Gomez
,
L.
,
Martinez-Sanchez
,
I.
, and
Urriolagoitia-Calderón
,
G.
,
2013
, “
On the Numerical Analysis of Contact Stresses in a Total Knee Replacement (TKR)
,”
Science and Information Conference
,
IEEE,
London, UK, Oct. 7–9, pp.
197
201
.https://ieeexplore.ieee.org/document/6661738
61.
Senalp
,
A. Z.
,
Kayabasi
,
O.
, and
Kurtaran
,
H.
,
2007
, “
Static, Dynamic and Fatigue Behavior of Newly Designed Stem Shapes for Hip Prosthesis Using Finite Element Analysis
,”
Mater. Des.
,
28
(
5
), pp.
1577
1583
.10.1016/j.matdes.2006.02.015
62.
Vinakurava
,
A.
, and
Skrzat
,
A.
,
2016
, “
Biomechanical Properties of Hip Implant With Ceramics Coating
,”
Scientific Letters of Rzeszow University of Technology (NR 293)
, Mechanika, Wydzial Budowy Maszyn I Lotnictwa, Politechnika Rzeszowska, Poland, pp. 65–72.https://www.semanticscholar.org/paper/Biomechanical-properties-of-hip-implant-with-Vinakurava-Skrzat/f3524bca6bf7c4d3980a9087227afda9dcf60d54
63.
Avval
,
P. T.
,
Samiezadeh
,
S.
, and
Bougherara
,
H.
,
2014
, “
Bone Remodeling in Response to a New Biomimetic Polymer-Composite Hip Stem: Computational Study Using Mechano-Biochemical Model
,”
ECCM16 -16th European Conference on Composite Materials
, Seville, Spain, pp.
22
26
.https://www.researchgate.net/publication/266853566_Bone_Remodeling_in_response_to_a_new_Biomimetic_Polymer-composite_Hip_stem_Computational_study_using_Mechano-biochemical_Model
64.
Jonkers
,
I.
,
Sauwen
,
N.
,
Lenaerts
,
G.
,
Mulier
,
M.
,
Van der Perre
,
G.
, and
Jaecques
,
S.
,
2008
, “
Relation Between Subject-Specific Hip Joint Loading, Stress Distribution in the Proximal Femur and Bone Mineral Density Changes After Total Hip Replacement
,”
J. Biomech.
,
41
(
16
), pp.
3405
3413
.10.1016/j.jbiomech.2008.09.011
65.
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Pal
,
S.
,
2007
, “
Simulation of Hip Fracture in Sideways Fall Using a 3D Finite Element Model of Pelvis–Femur–Soft Tissue Complex With Simplified Representation of Whole Body
,”
Med. Eng. Phys.
,
29
(
10
), pp.
1167
1178
.10.1016/j.medengphy.2006.11.001
66.
Norman
,
T. L.
,
Shultz
,
T.
,
Noble
,
G.
,
Gruen
,
T.
, and
Blaha
,
J.
,
2013
, “
Bone Creep and Short and Long Term Subsidence After Cemented Stem Total Hip Arthroplasty (THA)
,”
J. Biomech.
,
46
(
5
), pp.
949
955
.10.1016/j.jbiomech.2012.12.010
67.
Ikeo
,
N.
,
Ishimoto
,
T.
,
Serizawa
,
A.
, and
Nakano
,
T.
,
2014
, “
Control of Mechanical Properties of Three-Dimensional Ti-6Al-4V Products Fabricated by Electron Beam Melting With Unidirectional Elongated Pores
,”
Metall. Mater. Trans. A
,
45
(
10
), pp.
4293
4301
.10.1007/s11661-014-2396-9
68.
Jauch
,
S.
,
Huber
,
G.
,
Hoenig
,
E.
,
Baxmann
,
M.
,
Grupp
,
T.
, and
Morlock
,
M.
,
2011
, “
Influence of Material Coupling and Assembly Condition on the Magnitude of Micromotion at the Stem–Neck Interface of a Modular Hip Endoprosthesis
,”
J. Biomech.
,
44
(
9
), pp.
1747
1751
.10.1016/j.jbiomech.2011.04.007
69.
Lee
,
W.-S.
, and
Lin
,
C.-F.
,
1998
, “
Plastic Deformation and Fracture Behaviour of Ti–6Al–4V Alloy Loaded With High Strain Rate Under Various Temperatures
,”
Mater. Sci. Eng. A
,
241
(
1–2
), pp.
48
59
.10.1016/S0921-5093(97)00471-1
70.
Ming
,
Q.
,
Yong-Zhen
,
Z.
,
Jian-Heng
,
Y.
, and
Jun
,
Z.
,
2006
, “
Microstructure and Tribological Characteristics of Ti–6Al–4V Alloy Against GCr15 Under High Speed and Dry Sliding
,”
Mater. Sci. Eng. A
,
434
(
1–2
), pp.
71
75
.10.1016/j.msea.2006.07.043
71.
Tang
,
H.
,
Qian
,
M.
,
Liu
,
N.
,
Zhang
,
X.
,
Yang
,
G.
, and
Wang
,
J.
,
2015
, “
Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting
,”
JOM
,
67
(
3
), pp.
555
563
.10.1007/s11837-015-1300-4
72.
Shao
,
F.
,
Liu
,
Z.
,
Wan
,
Y.
, and
Shi
,
Z.
,
2010
, “
Finite Element Simulation of Machining of Ti-6Al-4V Alloy With Thermodynamical Constitutive Equation
,”
Int. J. Adv. Manuf. Technol.
,
49
(
5–8
), pp.
431
439
.10.1007/s00170-009-2423-y
73.
Hazlehurst
,
K. B.
,
Wang
,
C. J.
, and
Stanford
,
M.
,
2014
, “
A Numerical Investigation Into the Influence of the Properties of Cobalt Chrome Cellular Structures on the Load Transfer to the Periprosthetic Femur Following Total Hip Arthroplasty
,”
Med. Eng. Phys.
,
36
(
4
), pp.
458
466
.10.1016/j.medengphy.2014.02.008
74.
Bitsakos
,
C.
,
Kerner
,
J.
,
Fisher
,
I.
, and
Amis
,
A. A.
,
2005
, “
The Effect of Muscle Loading on the Simulation of Bone Remodelling in the Proximal Femur
,”
J. Biomech.
,
38
(
1
), pp.
133
139
.10.1016/j.jbiomech.2004.03.005
75.
Monif
,
M. M.
,
2012
, “
Finite Element Study on the Predicted Equivalent Stresses in the Artificial Hip Joint
,”
J. Biomed. Sci. Eng.
, 5(2), pp.
43
51
.10.4236/jbise.2012.52007
76.
Kanis
,
J. A.
,
Borgstrom
,
F.
,
De Laet
,
C.
,
Johansson
,
H.
,
Johnell
,
O.
,
Jonsson
,
B.
,
Oden
,
A.
,
Zethraeus
,
N.
,
Pfleger
,
B.
, and
Khaltaev
,
N.
,
2005
, “
Assessment of Fracture Risk
,”
Osteoporosis Int.
,
16
(
6
), pp.
581
589
.10.1007/s00198-004-1780-5
77.
Ghosh
,
R.
, and
Gupta
,
S.
,
2014
, “
Bone Remodelling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant–Bone Interfacial Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
257
269
.10.1016/j.jmbbm.2014.01.010
78.
Weinans
,
H.
,
Huiskes
,
R.
,
Van Rietbergen
,
B.
,
Sumner
,
D.
,
Turner
,
T.
, and
Galante
,
J.
,
1993
, “
Adaptive Bone Remodeling Around Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments and Computer Simulation
,”
J. Orthop. Res.
,
11
(
4
), pp.
500
513
.10.1002/jor.1100110405
79.
Ghosh
,
R.
,
Gupta
,
S.
,
Dickinson
,
A.
, and
Browne
,
M.
,
2013
, “
Experimental Validation of Numerically Predicted Strain and Micromotion in Intact and Implanted Composite Hemi-Pelvises
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
2
), pp.
162
174
.10.1177/0954411912461238
80.
Martin
,
R. B.
,
1972
, “
The Effects of Geometric Feedback in the Development of Osteoporosis
,”
J. Biomech.
,
5
(
5
), pp.
447
455
.10.1016/0021-9290(72)90003-6
81.
Martin
,
R. B.
,
1983
, “
Porosity and Specific Surface of Bone
,”
Crit. Rev. Biomed. Eng.
,
10
(
3
), pp.
179
222
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&lang=en&idt=9572744
82.
Technical Data Sheets, 2015,, “Titanium TI-6AL-4V-AMS-4911,” ASM Aerospace Specification Metals, Inc., Pompano Beach, FL, accessed May 21, 2015,
http://www.aerospacemetals.com/titanium-ti-6al-4v-ams-4911.html
83.
Nalla
,
R.
,
Altenberger
,
I.
,
Noster
,
U.
,
Liu
,
G.
,
Scholtes
,
B.
, and
Ritchie
,
R.
,
2003
, “
On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—on the Fatigue Behavior of Ti–6Al–4V at Ambient and Elevated Temperatures
,”
Mater. Sci. Eng.: A
,
355
(
1–2
), pp.
216
230
.10.1016/S0921-5093(03)00069-8
84.
Keaveny
,
T. M.
,
Morgan
,
E. F.
, and
Yeh
,
O. C.
,
2004
, “
Bone Mechanics
,”
Standard Handbook Biomedical Engineering Design
, Chapter 8, McGraw-Hill, New York, pp. 8.1–8.23.
85.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.10.1016/S0021-9290(98)00057-8
86.
Matsuura
,
M.
,
Eckstein
,
F.
,
Lochmüller
,
E.-M.
, and
Zysset
,
P. K.
,
2008
, “
The Role of Fabric in the Quasi-Static Compressive Mechanical Properties of Human Trabecular Bone From Various Anatomical Locations
,”
Biomech. Model. Mechanobiol.
,
7
(
1
), pp.
27
42
.10.1007/s10237-006-0073-7
87.
Bah
,
M. T.
,
Nair
,
P. B.
, and
Browne
,
M.
,
2009
, “
Mesh Morphing for Finite Element Analysis of Implant Positioning in Cementless Total Hip Replacements
,”
Med. Eng. Phys.
,
31
(
10
), pp.
1235
1243
.10.1016/j.medengphy.2009.08.001
88.
Huiskes
,
R.
,
Weinans
,
H.
, and
Van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
, (274), pp.
124
134
.https://www.ncbi.nlm.nih.gov/pubmed/1728998
You do not currently have access to this content.