Abstract

Computational modeling of cardiovascular flows is becoming increasingly important in a range of biomedical applications, and understanding the fundamentals of computational modeling is important for engineering students. In addition to their purpose as research tools, integrated image-based computational fluid dynamics (CFD) platforms can be used to teach the fundamental principles involved in computational modeling and generate interest in studying cardiovascular disease. We report the results of a study performed at five institutions designed to investigate the effectiveness of an integrated modeling platform as an instructional tool and describe “best practices” for using an integrated modeling platform in the classroom. Use of an integrated modeling platform as an instructional tool in nontraditional educational settings (workshops, study abroad programs, in outreach) is also discussed. Results of the study show statistically significant improvements in understanding after using the integrated modeling platform, suggesting such platforms can be effective tools for teaching fundamental cardiovascular computational modeling principles.

References

References
1.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1–2
), pp.
155
196
.10.1016/S0045-7825(98)80008-X
2.
Berg
,
P.
,
Voß
,
S.
,
Saalfeld
,
S.
,
Janiga
,
G.
,
Bergersen
,
A. W.
,
Valen-Sendstad
,
K.
,
Bruening
,
J.
,
Goubergrits
,
L.
,
Spuler
,
A.
,
Cancelliere
,
N. M.
,
Steinman
,
D. A.
,
Pereira
,
V. M.
,
Chiu
,
T. L.
,
Tsang
,
A. C. O.
,
Chung
,
B. J.
,
Cebral
,
J. R.
,
Cito
,
S.
,
Pallarès
,
J.
,
Copelli
,
G.
,
Csippa
,
B.
,
Paál
,
G.
,
Fujimura
,
S.
,
Takao
,
H.
,
Hodis
,
S.
,
Hille
,
G.
,
Karmonik
,
C.
,
Elias
,
S.
,
Kellermann
,
K.
,
Khan
,
M. O.
,
Marsden
,
A. L.
,
Morales
,
H. G.
,
Piskin
,
S.
,
Finol
,
E. A.
,
Pravdivtseva
,
M.
,
Rajabzadeh-Oghaz
,
H.
,
Paliwal
,
N.
,
Meng
,
H.
,
Seshadhri
,
S.
,
Howard
,
M.
,
Shojima
,
M.
,
Sugiyama
,
S.-I.
,
Niizuma
,
K.
,
Sindeev
,
S.
,
Frolov
,
S.
,
Wagner
,
T.
,
Brawanski
,
A.
,
Qian
,
Y.
,
Wu
,
Y.-A.
,
Carlson
,
K. D.
,
Dragomir-Daescu
,
D.
, and
Beuing
,
O.
,
2018
, “
Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—Phase I: Segmentation
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
565
581
. 10.1007/s13239-018-00376-0
3.
Valen-Sendstad
,
K.
,
Bergersen
,
A. W.
,
Shimogonya
,
Y.
,
Goubergrits
,
L.
,
Bruening
,
J.
,
Pallares
,
J.
,
Cito
,
S.
,
Piskin
,
S.
,
Pekkan
,
K.
,
Geers
,
A. J.
,
Larrabide
,
I.
,
Rapaka
,
S.
,
Mihalef
,
V.
,
Fu
,
W.
,
Qiao
,
A.
,
Jain
,
K.
,
Roller
,
S.
,
Mardal
,
K.-A.
,
Kamakoti
,
R.
,
Spirka
,
T.
,
Ashton
,
N.
,
Revell
,
A.
,
Aristokleous
,
N.
,
Houston
,
J. G.
,
Tsuji
,
M.
,
Ishida
,
F.
,
Menon
,
P. G.
,
Browne
,
L. D.
,
Broderick
,
S.
,
Shojima
,
M.
,
Koizumi
,
S.
,
Barbour
,
M.
,
Aliseda
,
A.
,
Morales
,
H. G.
,
Lefèvre
,
T.
,
Hodis
,
S.
,
Al-Smadi
,
Y. M.
,
Tran
,
J. S.
,
Marsden
,
A. L.
,
Vaippummadhom
,
S.
,
Einstein
,
G. A.
,
Brown
,
A. G.
,
Debus
,
K.
,
Niizuma
,
K.
,
Rashad
,
S.
,
Sugiyama
,
S.-I.
,
Owais Khan
,
M.
,
Updegrove
,
A. R.
,
Shadden
,
S. C.
,
Cornelissen
,
B. M. W.
,
Majoie
,
C. B. L. M.
,
Berg
,
P.
,
Saalfield
,
S.
,
Kono
,
K.
, and
Steinman
,
D. A.
,
2018
, “
Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
544
564
. 10.1007/s13239-018-00374-2
4.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.10.1007/s11517-008-0420-1
5.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
6.
Harris
,
T. R.
,
Bransford
,
J. D.
, and
Brophy
,
S. P.
,
2002
, “
Roles for Learning Sciences and Learning Technologies in Biomedical Engineering Education: A Review of Recent Advances
,”
Annu. Rev. Biomed. Eng.
,
4
(
1
), pp.
29
48
.10.1146/annurev.bioeng.4.091701.125502
7.
Goergen
,
C. J.
,
Shadden
,
S. C.
, and
Marsden
,
A. L.
,
2017
, “
SimVascular as an Instructional Tool in the Classroom
,”
IEEE Frontiers in Education Conference (FIE)
, Indianapolis, IN, Oct. 18–21, pp.
1
4
.10.1109/FIE.2017.8190438
8.
Wilson
,
N. M.
,
Ortiz
,
A. K.
, and
Johnson
,
A. B.
,
2013
, “
The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results
,”
J. Med. Device
,
7
(
4
), p.
409231
.10.1115/1.4025983
9.
Demir
,
S. S.
,
2006
, “
Interactive Cell Modeling Web-Resource, iCell, as a Simulation-Based Teaching and Learning Tool to Supplement Electrophysiology Education
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1077
1087
.10.1007/s10439-006-9138-0
10.
Bianconi
,
F.
,
Saetta
,
S. A.
, and
Tiacci
,
L.
,
2006
, “
A Web-Based Simulation Game as a Learning Tool for the Design Process of Complex Systems
,”
J. Des. Res.
,
5
(
2
), pp.
253
272
.10.1504/JDR.2006.011365
11.
Demir
,
S. S.
,
2004
, “
An Interactive Electrophysiology Training Resource for Simulation-Based Teaching and Learning
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, San Francisco, CA, Sept. 1–5, pp.
5169
5171
.10.1109/IEMBS.2004.1404439
12.
Kaddoura
,
M.
,
2013
, “
Think Pair Share: A Teaching  Learning Strategy to Enhance Students' Critical Thinking
,”
Educ. Res. Q
,
36
(
4
), pp.
3
24
.https://eric.ed.gov/?id=EJ1061947
13.
Stigmar
,
M.
,
2016
, “
Peer-to-Peer Teaching in Higher Education: A Critical Literature Review
,”
Mentoring Tutoring Partnership Learn.
,
24
(
2
), pp.
124
136
.10.1080/13611267.2016.1178963
14.
AhrensGeveci
,
J. B.
, and
Law
,
C.
,
2005
, “
ParaView: An End-User Tool for Large Data Visualization
,” The Visualization Handbook, Elsevier, Amsterdam, The Netherlands. 
15.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
,
Lathrop
,
S.
,
Lifka
,
D.
,
Peterson
,
G. D.
,
Roskies
,
R.
,
Scott
,
J. R.
, and
Wilkins-Diehr
,
N.
,
2014
, “
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
,
16
(
5
), pp.
62
74
.10.1109/MCSE.2014.80
16.
Wilkins-Diehr
,
N.
,
Zentner
,
M.
,
Pierce
,
M.
,
Dahan
,
M.
,
Lawrence
,
K.
,
Hayden
,
L.
, and
Mullinix
,
N.
,
2018
, “
The Science Gateways Community Institute at Two Years
,” Proceedings of the Practice and Experience on Advanced Research Computing (
PEARC ‘18
),
Pittsburgh, PA
, July, pp.
1
8
.https://dl.acm.org/doi/10.1145/3219104.3219142
17.
Wilson
,
N. M.
,
Marru
,
S.
,
Abeysinghe
,
E.
,
Christie
,
M. A.
,
Maher
,
G. D.
,
Updegrove
,
A. R.
,
Pierce
,
M.
, and
Marsden
,
A. L.
,
2018
, “
Using a Science Gateway to Deliver SimVascular Software as a Service for Classroom Instruction
,” Proceedings of the Practice and Experience on Advanced Research Computing (
PEARC ‘18
),
Pittsburgh, PA
, July, pp.
1
4
.https://dl.acm.org/doi/10.1145/3219104.3229242
18.
Enevoldsen
,
M. S.
,
Henneberg
,
K. A.
,
Lönn
,
L.
, and
Jensen
,
J. A.
,
2011
, “
Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall With and Without Aneurysms
,”
15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics. IFMBE Proceedings
,
K.
Dremstrup
,
S.
Rees
,
M. Ø.
Jensen
, eds., Vol.
34
,
Springer
,
Berlin
.
19.
Belén
,
C.
,
Federica
,
V.
,
Gunnar
,
C.
,
Bolger Ann
,
F.
,
Matts
,
K.
,
Carl-Johan
,
C.
, and
Tino
,
E.
,
2018
, “
Non-Invasive Assessment of Systolic and Diastolic Cardiac Function During Rest and Stress Conditions Using an Integrated Image-Modeling Approach
,”
Front. Physiol.
,
9
, p.
1515
.10.3389/fphys.2018.01515
You do not currently have access to this content.