Abstract

Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient medical imaging data has shown great potential in obtaining patient-specific hemodynamics information for functional assessment of the heart. A typical model construction pipeline usually starts with segmentation of the LV by manual delineation followed by mesh generation and registration techniques using separate software tools. However, such approaches usually require significant time and human efforts in the model generation process, limiting large-scale analysis. In this study, we propose an approach toward fully automating the model generation process for CFD simulation of LV flow to significantly reduce LV CFD model generation time. Our modeling framework leverages a novel combination of techniques including deep-learning based segmentation, geometry processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no user intervention.1 We utilized an ensemble of two-dimensional (2D) convolutional neural networks (CNNs) for automatic segmentation of cardiac structures from three-dimensional (3D) patient images and our segmentation approach outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data containing both magnetic resonance (MR) and computed tomography(CT) cardiac scans. We demonstrate that through a combination of segmentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from segmentations for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics modeling by performing CFD simulations from two representative time-resolved patient-specific image datasets.

References

References
1.
Pedrizzetti
,
G.
,
Canna
,
G.
,
Alfieri
,
O.
, and
Tonti
,
G.
,
2014
, “
The Vortex—An Early Predictor of Cardiovascular Outcome?
,”
Nat. Rev. Cardiol.
, 11(9), pp.
545
553
.10.1038/nrcardio.2014.75
2.
Faludi
,
R.
,
Szulik
,
M.
,
D'hooge
,
J.
,
Herijgers
,
P.
,
Rademakers
,
F.
,
Pedrizzetti
,
G.
, and
Voigt
,
J.-U.
,
2010
, “
Left Ventricular Flow Patterns in Healthy Subjects and Patients With Prosthetic Mitral Valves
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
6
), pp.
1501
1510
.10.1016/j.jtcvs.2009.07.060
3.
Martínez-Legazpi
,
P.
,
Bermejo
,
J.
,
Benito
,
Y.
,
Yotti
,
R.
,
Pérez del Villar
,
C.
,
González-Mansilla
,
A.
,
Barrio
,
A.
,
Villacorta
,
E.
,
Sánchez
,
P. L.
,
Fernández-Avilés
,
F.
, and
del Álamo
,
J. C.
,
2014
, “
Contribution of the Diastolic Vortex Ring to Left Ventricular Filling
,”
J. Am. Coll. Cardiol.
,
64
(
16
), pp.
1711
1721
.10.1016/j.jacc.2014.06.1205
4.
Gharib
,
M.
,
Rambod
,
E.
,
Kheradvar
,
A.
,
Sahn
,
D.
, and
Dabiri
,
J.
,
2006
, “
Optimal Vortex Formation as an Index of Cardiac Health
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
16
), pp.
6305
6308
.10.1073/pnas.0600520103
5.
Pedrizzetti
,
G.
,
Domenichini
,
F.
, and
Tonti
,
G.
,
2010
, “
On the Left Ventricular Vortex Reversal After Mitral Valve Replacement
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
769
773
.10.1007/s10439-010-9928-2
6.
Elbaz
,
M. S.
,
van der Geest
,
R. J.
,
Calkoen
,
E. E.
,
de Roos
,
A.
,
Lelieveldt
,
B. P.
,
Roest
,
A. A.
, and
Westenberg
,
J. J.
,
2017
, “
Assessment of Viscous Energy Loss and the Association With Three-Dimensional Vortex Ring Formation in Left Ventricular Inflow: In Vivo Evaluation Using Four-Dimensional Flow MRI
,”
Magn. Reson. Med.
,
77
(
2
), pp.
794
805
.10.1002/mrm.26129
7.
Eriksson
,
J.
,
Dyverfeldt
,
P.
,
Engvall
,
J.
,
Bolger
,
A.
,
Ebbers
,
T.
, and
Carlhäll
,
C.-J.
,
2011
, “
Quantification of Presystolic Blood Flow Organization and Energetics in the Human Left Ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
,
300
(
6
), pp.
H2135
H2141
.10.1152/ajpheart.00993.2010
8.
Chnafa
,
C.
,
Mendez
,
S.
, and
Nicoud
,
F.
,
2016
, “
Image-Based Simulations Show Important Flow Fluctuations in a Normal Left Ventricle: What Could Be the Implications?
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3346
3358
.10.1007/s10439-016-1614-6
9.
Caballero
,
A.
,
Mao
,
W.
,
Liang
,
L.
,
Oshinski
,
J.
,
Primiano
,
C.
,
McKay
,
R.
,
Kodali
,
S.
, and
Sun
,
W.
,
2017
, “
Modeling Left Ventricular Blood Flow Using Smoothed Particle Hydrodynamics
,”
Cardiovasc. Eng. Technol.
,
8
(
4
), pp.
465
479
.10.1007/s13239-017-0324-z
10.
N Doost
,
S.
,
Zhong
,
L.
,
Su
,
B.
, and
Morsi
,
Y. Y.
,
2016
, “
The Numerical Analysis of Non-Newtonian Blood Flow in Human Patient-Specific Left Ventricle
,”
Comput. Methods Programs Biomed.
,
127
(
1
), pp.
232
247
.10.1016/j.cmpb.2015.12.020
11.
Khalafvand
,
S. S.
,
Ng
,
E.
,
Zhong
,
L.
, and
Hung
,
T.-K.
,
2012
, “
Fluid-Dynamics Modelling of the Human Left Ventricle With Dynamic Mesh for Normal and Myocardial Infarction: Preliminary Study
,”
Comput. Biol. Med.
,
42
(
8
), pp.
863
870
.10.1016/j.compbiomed.2012.06.010
12.
Schenkel
,
T.
,
Malvè
,
M.
,
Reik
,
M.
,
Markl
,
M.
,
Jung
,
B.
, and
Oertel
,
H.
,
2009
, “
MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
503
515
.10.1007/s10439-008-9627-4
13.
Bavo
,
A.
,
Pouch
,
A.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
Gorman
,
J.
, III
,
Gorman
,
R.
, and
Segers
,
P.
,
2016
, “
Patient-Specific CFD Simulation of Intraventricular Haemodynamics Based on 3D Ultrasound Imaging
,”
Biomed. Eng. Online
,
15
(
1
), p.
107
.10.1186/s12938-016-0231-9
14.
Santiago
,
A.
,
Aguado-Sierra
,
J.
,
Zavala-Aké
,
M.
,
Doste-Beltran
,
R.
,
Gómez
,
S.
,
Arís
,
R.
,
Cajas
,
J. C.
,
Casoni
,
E.
, and
Vázquez
,
M.
,
2018
, “
Fully Coupled Fluid-Electro-Mechanical Model of the Human Heart for Supercomputers
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
12
), p.
e3140
.10.1002/cnm.3140
15.
Karabelas
,
E.
,
Gsell
,
M.
,
Augustin
,
C.
,
Marx
,
L.
,
Neic
,
A.
,
Prassl
,
A.
,
Goubergrits
,
L.
,
Kuehne
,
T.
, and
Plank
,
G.
,
2018
, “
Towards a Computational Framework for Modeling the Impact of Aortic Coarctations Upon Left Ventricular Load
,”
Front. Physiol.
,
9
(
5
), p.
538
.10.3389/fphys.2018.00538
16.
Augustin
,
C.
,
Crozier
,
A.
,
Neic
,
A.
,
Prassl
,
A.
,
Karabelas
,
E.
,
Silva
,
T.
,
Fernandes
,
J.
,
Campos
,
F.
,
Kuehne
,
T.
, and
Plank
,
G.
,
2016
, “
Patient-Specific Modeling of Left Ventricular Electromechanics as a Driver for Haemodynamic Analysis
,”
Europace
,
18
(
Suppl._4
), pp.
iv121
iv129
.10.1093/europace/euw369
17.
Mittal
,
R.
,
Seo
,
J. H.
,
Vedula
,
V.
,
Choi
,
Y.
,
Liu
,
H.
,
Huang
,
H.
,
Jain
,
S.
,
Younes
,
L.
,
Abraham
,
T.
, and
George
,
R.
,
2016
, “
Computational Modeling of Cardiac Hemodynamics: Current Status and Future Outlook
,”
J. Comput. Phys.
,
305
, pp.
1065
1082
.10.1016/j.jcp.2015.11.022
18.
N Doost
,
S.
,
Ghista
,
D.
,
Su
,
B.
,
Zhong
,
L.
, and
Morsi
,
Y. Y.
,
2016
, “
Heart Blood Flow Simulation: A Perspective Review
,”
Biomed. Eng. OnLine
,
15
(
1
), p.
12
.10.1186/s12938-016-0224-8
19.
Nguyen
,
V.-T.
,
Chong
,
J. L.
,
Huy
,
N.
,
Zhong
,
L.
, and
Leo
,
H.
,
2015
, “
A Semi-Automated Method for Patient-Specific Computational Flow Modelling of Left Ventricles
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
4
), pp.
401
413
.10.1080/10255842.2013.803534
20.
Khalafvand
,
S. S.
,
Voorneveld
,
J.
,
Muralidharan
,
A.
,
Gijsen
,
F.
,
Bosch
,
J. G.
,
Walsum
,
T.
,
Haak
,
A.
,
Jong
,
N.
, and
Kenjeres
,
S.
,
2018
, “
Assessment of Human Left Ventricle Flow Using Statistical Shape Modelling and Computational Fluid Dynamics
,”
J. Biomech.
,
74
(
4
), pp.
116
125
.10.1016/j.jbiomech.2018.04.030
21.
Vellguth
,
K.
,
Brüning
,
J.
,
Goubergrits
,
L.
,
Tautz
,
L.
,
Hennemuth
,
A.
,
Kertzscher
,
U.
,
Degener
,
F.
,
Kelm
,
M.
,
Sündermann
,
S.
, and
Kuehne
,
T.
,
2018
, “
Development of a Modeling Pipeline for the Prediction of Hemodynamic Outcome After Virtual Mitral Valve Repair Using Image-Based CFD
,”
Int. J. Comput. Assisted Radiol. Surg.
,
13
(
11
), pp.
1795
1805
.10.1007/s11548-018-1821-8
22.
Avendi
,
M. R.
,
Kheradvar
,
A.
, and
Jafarkhani
,
H.
,
2016
, “
A Combined Deep-Learning and Deformable-Model Approach to Fully Automatic Segmentation of the Left Ventricle in Cardiac MRI
,”
Med. Image Anal.
,
30
, pp.
108
119
.10.1016/j.media.2016.01.005
23.
Zhuang
,
X.
,
Li
,
L.
,
Payer
,
C.
,
Štern
,
D.
,
Urschler
,
M.
,
Heinrich
,
M. P.
,
Oster
,
J.
,
Wang
,
C.
,
Smedby
,
Ö.
,
Bian
,
C.
,
Yang
,
X.
,
Heng
,
P.-A.
,
Mortazi
,
A.
,
Bagci
,
U.
,
Yang
,
G.
,
Sun
,
C.
,
Galisot
,
G.
,
Ramel
,
J.-Y.
,
Brouard
,
T.
,
Tong
,
Q.
,
Si
,
W.
,
Liao
,
X.
,
Zeng
,
G.
,
Shi
,
Z.
,
Zheng
,
G.
,
Wang
,
C.
,
MacGillivray
,
T.
,
Newby
,
D.
,
Rhode
,
K.
,
Ourselin
,
S.
,
Mohiaddin
,
R.
,
Keegan
,
J.
,
Firmin
,
D.
, and
Yang
,
G.
,
2019
, “
Evaluation of Algorithms for Multi-Modality Whole Heart Segmentation: An Open-Access Grand Challenge
,”
Med. Image Anal.
,
58
, p.
101537
.10.1016/j.media.2019.101537
24.
Bernard
,
O.
,
Lalande
,
A.
,
Zotti
,
C.
,
Cervenansky
,
F.
,
Yang
,
X.
,
Heng
,
P.
,
Cetin
,
I.
,
Lekadir
,
K.
,
Camara
,
O.
,
Gonzalez Ballester
,
M. A.
,
Sanroma
,
G.
,
Napel
,
S.
,
Petersen
,
S.
,
Tziritas
,
G.
,
Grinias
,
E.
,
Khened
,
M.
,
Kollerathu
,
V. A.
,
Krishnamurthi
,
G.
,
Rohé
,
M.
,
Pennec
,
X.
,
Sermesant
,
M.
,
Isensee
,
F.
,
Jäger
,
P.
,
Maier-Hein
,
K. H.
,
Full
,
P. M.
,
Wolf
,
I.
,
Engelhardt
,
S.
,
Baumgartner
,
C. F.
,
Koch
,
L. M.
,
Wolterink
,
J. M.
,
Išgum
,
I.
,
Jang
,
Y.
,
Hong
,
Y.
,
Patravali
,
J.
,
Jain
,
S.
,
Humbert
,
O.
, and
Jodoin
,
P.
,
2018
, “
Deep Learning Techniques for Automatic Mri Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
,”
IEEE Trans. Med. Imaging
,
37
(
11
), pp.
2514
2525
.10.1109/TMI.2018.2837502
25.
Ngo
,
T.
,
Lu
,
Z.
, and
Carneiro
,
G.
,
2017
, “
Combining Deep Learning and Level Set for the Automated Segmentation of the Left Ventricle of the Heart From Cardiac Cine Magnetic Resonance
,”
Med. Image Anal.
,
35
(
5
), pp.
159
171
.10.1016/j.media.2016.05.009
26.
Ju
,
C.
,
Bibaut
,
A.
, and
Laan
,
M.
,
2018
, “
The Relative Performance of Ensemble Methods With Deep Convolutional Neural Networks for Image Classification
,”
J. Appl. Stat.
,
45
(
15
), pp.
2800
2818
.10.1080/02664763.2018.1441383
27.
Zheng
,
H.
,
Zhang
,
Y.
,
Yang
,
L.
,
Liang
,
P.
,
Zhao
,
Z.
,
Wang
,
C.
, and
Chen
,
D. Z.
,
2019
, “
A New Ensemble Learning Framework for 3D Biomedical Image Segmentation
,”
AAAI
Paper No. 4541.https://arxiv.org/pdf/1812.03945.pdf
28.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015)
,
N.
Navab
,
J.
Hornegger
,
W. M.
Wells
, and
A. F.
Frangi
, eds., Munich, Germany, Oct. 5–9,
Springer International Publishing
, Cham, Switzerland, pp.
234
241
.10.1007/978-3-319-24574-4_28
29.
Kingma
,
D.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
, San Diego, CA, May 7–9, p.
12
.https://arxiv.org/abs/1412.6980
30.
Updegrove
,
A.
,
Wilson
,
N.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A.
, and
Shadden
,
S.
,
2017
, “
Simvascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
31.
Klein
,
S.
,
Staring
,
M.
,
Murphy
,
K.
,
Viergever
,
M.
, and
Pluim
,
J.
,
2010
, “
Elastix: A Toolbox for Intensity-Based Medical Image Registration
,”
IEEE Trans. Med. Imaging
,
29
(
1
), pp.
196
205
.10.1109/TMI.2009.2035616
32.
Payer
,
C.
,
Štern
,
D.
,
Bischof
,
H.
, and
Urschler
,
M.
,
2018
, “
Multi-Label Whole Heart Segmentation Using CNNS and Anatomical Label Configurations
,”
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges
,
Springer
, Cham, Switzerland, pp.
190
198
.
33.
Tong
,
Q.
,
Ning
,
M.
,
Si
,
W.
,
Liao
,
X.
, and
Qin
,
J.
,
2018
, “
3D Deeply-Supervised u-Net Based Whole Heart Segmentation
,”
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges
,
Springer
, Cham, Switzerland, pp.
224
232
.
34.
Moeskops
,
P.
,
Wolterink
,
J. M.
,
van der Velden
,
B. H. M.
,
Gilhuijs
,
K. G. A.
,
Leiner
,
T.
,
Viergever
,
M. A.
, and
Išgum
,
I.
,
2016
, “
Deep Learning for Multi-Task Medical Image Segmentation in Multiple Modalities
,”
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016)
,
S.
Ourselin
,
L.
Joskowicz
,
M. R.
Sabuncu
,
G.
Unal
, and
W.
Wells
, eds., Athens, Greece, Oct. 17-21,
Springer International Publishing
, Cham, Switzerland, pp.
478
486
.10.1007/978-3-319-46723-8_55
35.
Maher
,
G.
,
Wilson
,
N.
, and
Marsden
,
A.
,
2019
, “
Accelerating Cardiovascular Model Building With Convolutional Neural Networks
,”
Med. Biol. Eng. Comput.
,
57
(
10
), pp.
2319
2335
.10.1007/s11517-019-02029-3
36.
Iglesias
,
J.
, and
Sabuncu
,
M.
,
2015
, “
Multi-Atlas Segmentation of Biomedical Images: A Survey
,”
Med. Image Anal.
,
24
(
1
), pp.
205
219
.10.1016/j.media.2015.06.012
37.
Shamonin
,
D.
,
Bron
,
E.
,
Lelieveldt
,
B.
,
Smits
,
M.
,
Klein
,
S.
, and
Staring
,
M.
,
2013
, “
Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease
,”
Front. Neuroinf.
,
7
(
1
), p.
50
.10.3389/fninf.2013.00050
38.
Pouch
,
A.
,
Vergnat
,
M.
,
McGarvey
,
J.
,
Ferrari
,
G.
,
Jackson
,
B.
,
Sehgal
,
C.
,
Yushkevich
,
P.
,
Gorman
,
R.
, and
Gorman
,
J.
, III
,
2014
, “
Statistical Assessment of Normal Mitral Annular Geometry Using Automated Three-Dimensional Echocardiographic Analysis
,”
Ann. Thorac. Surg.
,
97
(
1
), pp.
71
77
.10.1016/j.athoracsur.2013.07.096
39.
Liang
,
L.
,
Kong
,
F.
,
Martin
,
C.
,
Pham
,
T.
,
Wang
,
Q.
,
Duncan
,
J.
, and
Sun
,
W.
,
2017
, “
Machine Learning Based 3D Geometry Reconstruction and Modeling of Aortic Valve Deformation Using 3D CT Images: Machine Learning Based 3D Aortic Valve Modeling
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
5
), p.
e02827
.10.1002/cnm.2827
40.
Sacco
,
F.
,
Paun
,
B.
,
Lehmkuhl
,
O.
,
Iles
,
T. L.
,
Iaizzo
,
P. A.
,
Houzeaux
,
G.
,
Vázquez
,
M.
,
Butakoff
,
C.
, and
Aguado-Sierra
,
J.
,
2018
, “
Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations
,”
Front. Physiol.
,
9
, p.
458
.10.3389/fphys.2018.00458
41.
Vedula
,
V.
,
Seo
,
J. H.
,
Lardo
,
A.
, and
Mittal
,
R.
,
2016
, “
Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
3
21
.10.1007/s00162-015-0349-6
42.
Pasipoularides
,
A. D.
,
Shu
,
M.
,
Shah
,
A.
,
Womack
,
M. S.
, and
Glower
,
D. D.
,
2003
, “
Diastolic Right Ventricular Filling Vortex in Normal and Volume Overload States
,”
Am. J. Physiol. Heart Circ. Physiol.
,
284
(
4
), pp.
H1064
H1072
.10.1152/ajpheart.00804.2002
43.
Sheehan
,
F.
, and
Redington
,
A.
,
2008
, “
The Right Ventricle: Anatomy, Physiology and Clinical Imaging
,”
Heart
,
94
(
11
), pp.
1510
1515
.10.1136/hrt.2007.132779
44.
Noordegraaf
,
A.
,
Chin
,
K.
,
Haddad
,
F.
,
Hassoun
,
P.
,
Hemnes
,
A.
,
Hopkins
,
S.
,
Kawut
,
S.
,
Langleben
,
D.
,
Lumens
,
J.
, and
Naeije
,
R.
,
2019
, “
Pathophysiology of the Right Ventricle and of the Pulmonary Circulation in Pulmonary Hypertension: An Update
,”
Eur. Respir. J.
,
53
(
1
), p.
1801900
.10.1183/13993003.01900-2018
45.
Crystal
,
G.
, and
Pagel
,
P.
,
2018
, “
Right Ventricular Perfusion: Physiology and Clinical Implications
,”
Anesthesiology
,
128
(
1
), pp.
202
218
.10.1097/ALN.0000000000001891
You do not currently have access to this content.