Abstract

Studies on single muscle fiber passive material properties often report relatively large variation in elastic modulus (or normalized stiffness), and it is not clear where this variation arises. This study was designed to determine if the stiffness, normalized to both fiber cross-sectional area and length, is inherently different between types 1 and 2 muscle fibers. Vastus lateralis fibers (n = 93), from ten young men, were mechanically tested using a cumulative stretch-relaxation protocol. SDS-PAGE classified fibers as types 1 or 2. While there was a difference in normalized stiffness between fiber types (p = 0.0019), an unexpected inverse relationship was found between fiber diameter and normalized stiffness (r = −0.64; p < 0.001). As fiber type and diameter are not independent, a one-way analysis of covariance (ANCOVA) including fiber diameter as a covariate was run; this eliminated the effect of fiber type on normalized stiffness (p = 0.1935). To further explore the relationship between fiber size and elastic properties, we tested whether stiffness was linearly related to fiber cross-sectional area, as would be expected for a homogenous material. Passive stiffness was not linearly related to fiber area (p < 0.001), which can occur if single muscle fibers are better represented as composite materials. The rule of mixtures for composite materials was used to explore whether the presence of a stiff perimeter-based fiber component could explain the observed results. The model (R2 = 0.38) predicted a perimeter-based normalized stiffness of 8800 ± 2600 kPa/μm, which is within the range of basement membrane moduli reported in the literature.

References

References
1.
Prado
,
L. G.
,
Makarenko
,
I.
,
Andresen
,
C.
,
KrüGer
,
M.
,
Opitz
,
C. A.
, and
Linke
,
W. A.
,
2005
, “
Isoform Diversity of Giant Proteins in Relation to Passive and Active Contractile Properties of Rabbit Skeletal Muscles
,”
J. General Physiol.
,
126
(
5
), pp.
461
480
.10.1085/jgp.200509364
2.
Regev
,
G. J.
,
Kim
,
C. W.
,
Tomiya
,
A.
,
Lee
,
Y. P.
,
Ghofrani
,
H.
,
Garfin
,
S. R.
,
Lieber
,
R. L.
, and
Ward
,
S. R.
,
2011
, “
Psoas Muscle Architectural Design, In Vivo Sarcomere Length Range, and Passive Tensile Properties Support Its Role as a Lumbar Spine Stabilizer
,”
Spine
,
36
(
26
), pp.
E1666
E1674
.10.1097/BRS.0b013e31821847b3
3.
Ward
,
S. R.
,
Tomiya
,
A.
,
Regev
,
G. J.
,
Thacker
,
B. E.
,
Benzl
,
R. C.
,
Kim
,
C. W.
, and
Lieber
,
R. L.
,
2009
, “
Passive Mechanical Properties of the Lumbar Multifidus Muscle Support Its Role as a Stabilizer
,”
J. Biomechanics
,
42
(
10
), pp.
1384
1389
.10.1016/j.jbiomech.2008.09.042
4.
Shah
,
S. B.
,
Davis
,
J.
,
Weisleder
,
N.
,
Kostavassili
,
I.
,
McCulloch
,
A. D.
,
Ralston
,
E.
,
Capetanaki
,
Y.
, and
Lieber
,
R. L.
,
2004
, “
Structural and Functional Roles of Desmin in Mouse Skeletal Muscle During Passive Deformation
,”
Biophys. J.
,
86
(
5
), pp.
2993
3008
.10.1016/S0006-3495(04)74349-0
5.
Brown
,
S. H.
,
Gregory
,
D. E.
,
Carr
,
J. A.
,
Ward
,
S. R.
,
Masuda
,
K.
, and
Lieber
,
R. L.
,
2011
, “
ISSLS Prize Winner: Adaptations to the Multifidus Muscle in Response to Experimentally Induced Intervertebral Disc Degeneration
,”
Spine
,
36
(
21
), pp.
1728
1736
.10.1097/BRS.0b013e318212b44b
6.
Gsell
,
K. Y.
,
Zwambag
,
D. P.
,
Fournier
,
D. E.
,
Séguin
,
C. A.
, and
Brown
,
S. H.
,
2017
, “
Paraspinal Muscle Passive Stiffness Remodels in Direct Response to Spine Stiffness
,”
Spine
,
42
(
19
), pp.
1440
1446
.10.1097/BRS.0000000000002132
7.
Safran
,
O.
,
Derwin
,
K. A.
,
Powell
,
K.
, and
Iannotti
,
J. P.
,
2005
, “
Changes in Rotator Cuff Muscle Volume, Fat Content, and Passive Mechanics After Chronic Detachment in a Canine Model
,”
JBJS
,
87
(
12
), pp.
2662
2670
.10.2106/00004623-200512000-00010
8.
Sato
,
E. J.
,
Killian
,
M. L.
,
Choi
,
A. J.
,
Lin
,
E.
,
Esparza
,
M. C.
,
Galatz
,
L. M.
,
Thomopoulos
,
S.
, and
Ward
,
S. R.
,
2014
, “
Skeletal Muscle Fibrosis and Stiffness Increase After Rotator Cuff Tendon Injury and Neuromuscular Compromise in a Rat Model
,”
J. Orthop. Res.
,
32
(
9
), pp.
1111
1116
.10.1002/jor.22646
9.
Fridén
,
J.
, and
Lieber
,
R. L.
,
2003
, “
Spastic Muscle Cells Are Shorter and Stiffer Than Normal Cells
,”
Muscle Nerve: Official J. Am. Assoc. Electrodiagnos. Med.
,
27
(
2
), pp.
157
164
.10.1002/mus.10247
10.
Lieber
,
R. L.
,
Runesson
,
E.
,
Einarsson
,
F.
, and
Fridén
,
J.
,
2003
, “
Inferior Mechanical Properties of Spastic Muscle Bundles Due to Hypertrophic but Compromised Extracellular Matrix Material
,”
Muscle Nerve: Official J. Am. Assoc. Electrodiagnos. Med.
,
28
(
4
), pp.
464
471
.10.1002/mus.10446
11.
Wang
,
K.
,
McClure
,
J.
, and
Tu
,
A. N. N.
,
1979
, “
Titin: Major Myofibrillar Components of Striated Muscle
,”
Proc. Natl. Acad. Sci.
,
76
(
8
), pp.
3698
3702
.10.1073/pnas.76.8.3698
12.
Granzier
,
H.
,
Helmes
,
M.
, and
Trombitas
,
K.
,
1996
, “
Nonuniform Elasticity of Titin in Cardiac Myocytes: A Study Using Immunoelectron Microscopy and Cellular Mechanics
,”
Biophys. J.
,
70
(
1
), pp.
430
442
.10.1016/S0006-3495(96)79586-3
13.
Granzier
,
H.
,
Labeit
,
D.
,
Wu
,
Y.
, and
Labeit
,
S.
,
2003
, “
Titin as a Modular Spring: Emerging Mechanisms for Elasticity Control by Titin in Cardiac Physiology and Pathophysiology
,”
Mechanics of Elastic Biomolecules
,
Springer
,
Dordrecht
, pp.
457
471
.10.1007/978-94-010-0147-2_7
14.
Horowits
,
R.
,
Kempner
,
E. S.
,
Bisher
,
M. E.
, and
Podolsky
,
R. J.
,
1986
, “
A Physiological Role for Titin and Nebulin in Skeletal Muscle
,”
Nature
,
323
(
6084
), pp.
160
164
.10.1038/323160a0
15.
Kontrogianni-Konstantopoulos
,
A.
,
Ackermann
,
M. A.
,
Bowman
,
A. L.
,
Yap
,
S. V.
, and
Bloch
,
R. J.
,
2009
, “
Muscle Giants: Molecular Scaffolds in Sarcomerogenesis
,”
Physiol. Rev.
,
89
(
4
), pp.
1217
1267
.10.1152/physrev.00017.2009
16.
Linke
,
W. A.
,
Ivemeyer
,
M.
,
Olivieri
,
N.
,
Kolmerer
,
B.
,
Rüegg
,
C. J.
, and
Labeit
,
S.
,
1996
, “
Towards a Molecular Understanding of the Elasticity of Titin
,”
J. Mol. Biol.
,
261
(
1
), pp.
62
71
.10.1006/jmbi.1996.0441
17.
Trombitás
,
K.
,
Jin
,
J. P.
, and
Granzier
,
H.
,
1995
, “
The Mechanically Active Domain of Titin in Cardiac Muscle
,”
Circ. Res.
,
77
(
4
), pp.
856
861
.10.1161/01.RES.77.4.856
18.
Ramsey
,
R. W.
, and
Street
,
S. F.
,
1940
, “
The Isometric Length‐Tension Diagram of Isolated Skeletal Muscle Fibers of the Frog
,”
J. Cellular Comp. Physiol.
,
15
(
1
), pp.
11
34
.10.1002/jcp.1030150103
19.
Rapoport
,
S. I.
,
1973
, “
The Anisotropic Elastic Properties of the Sarcolemma of the Frog Semitendinosus Muscle Fiber
,”
Biophys. J.
,
13
(
1
), pp.
14
36
.10.1016/S0006-3495(73)85967-3
20.
Tidball
,
J. G.
,
1986
, “
Energy Stored and Dissipated in Skeletal Muscle Basement Membranes During Sinusoidal Oscillations
,”
Biophys. J.
,
50
(
6
), pp.
1127
1138
.10.1016/S0006-3495(86)83557-3
21.
Purslow
,
P. P.
, and
Trotter
,
J. A.
,
1994
, “
The Morphology and Mechanical Properties of Endomysium in Series-Fibred Muscles: Variations With Muscle Length
,”
J. Muscle Res. Cell Motility
,
15
(
3
), pp.
199
308
.10.1007/BF00123482
22.
Bensamoun
,
S.
,
Stevens
,
L.
,
Fleury
,
M. J.
,
Bellon
,
G.
,
Goubel
,
F.
, and
Tho
,
M. H. B.
,
2006
, “
Macroscopic–Microscopic Characterization of the Passive Mechanical Properties in Rat Soleus Muscle
,”
J. Biomech.
,
39
(
3
), pp.
568
578
.10.1016/j.jbiomech.2004.04.036
23.
Brown
,
S. H.
,
Carr
,
J. A.
,
Ward
,
S. R.
, and
Lieber
,
R. L.
,
2012
, “
Passive Mechanical Properties of Rat Abdominal Wall Muscles Suggest an Important Role of the Extracellular Connective Tissue Matrix
,”
J. Orthop. Res.
,
30
(
8
), pp.
1321
1326
.10.1002/jor.22068
24.
Stewart
,
A. M.
,
Cook
,
M. S.
,
Dyer
,
K. Y.
, and
Alperin
,
M.
,
2018
, “
Structure–Function Relationship of the Human External Anal Sphincter
,”
Int. Urogynecol. J.
,
29
(
5
), pp.
673
678
.10.1007/s00192-017-3404-6
25.
Toursel
,
T.
,
Stevens
,
L.
,
Granzier
,
H.
, and
Mounier
,
Y.
,
2002
, “
Passive Tension of Rat Skeletal Soleus Muscle Fibers: Effects of Unloading Conditions
,”
J. Appl. Physiol.
,
92
(
4
), pp.
1465
1472
.10.1152/japplphysiol.00621.2001
26.
Miller
,
M. S.
,
Bedrin
,
N. G.
,
Ades
,
P. A.
,
Palmer
,
B. M.
, and
Toth
,
M. J.
,
2015
, “
Molecular Determinants of Force Production in Human Skeletal Muscle Fibers: Effects of Myosin Isoform Expression and Cross-Sectional Area
,”
Am. J. Physiol. Cell Physiol.
,
308
(
6
), pp.
C473
C484
.10.1152/ajpcell.00158.2014
27.
Fry
,
A. C.
,
Staron
,
R. S.
,
James
,
C. B. L.
,
Hikida
,
R. S.
, and
Hagerman
,
F. C.
,
1997
, “
Differential Titin Isoform Expression in Human Skeletal Muscle
,”
Acta Physiol. Scand.
,
161
(
4
), pp.
473
479
.10.1046/j.1365-201X.1997.00252.x
28.
Kovanen
,
V.
,
Suominen
,
H.
,
Risteli
,
J.
, and
Risteli
,
L.
,
1988
, “
Type IV Collagen and Laminin in Slow and Fast Skeletal Muscle in Rats—Effects of Age and Life-Time Endurance Training
,”
Collagen Related Res.
,
8
(
2
), pp.
145
153
.10.1016/S0174-173X(88)80026-8
29.
Tarnopolsky
,
M. A.
,
Pearce
,
E.
,
Smith
,
K.
, and
Lach
,
B.
,
2011
, “
Suction‐Modified Bergström Muscle Biopsy Technique: Experience With 13,500 Procedures
,”
Muscle Nerve
,
43
(
5
), pp.
716
725
.10.1002/mus.21945
30.
Eastwood
,
A. B.
,
Wood
,
D. S.
,
Bock
,
K. L.
, and
Sorenson
,
M. M.
,
1979
, “
Chemically Skinned Mammalian Skeletal Muscle I. The Structure of Skinned Rabbit Psoas
,”
Tissue Cell
,
11
(
3
), pp.
553
566
.10.1016/0040-8166(79)90062-4
31.
Shah
,
S. B.
, and
Lieber
,
R. L.
,
2003
, “
Simultaneous Imaging and Functional Assessment of Cytoskeletal Protein Connections in Passively Loaded Single Muscle Cells
,”
J. Histochem. Cytochem.
,
51
(
1
), pp.
19
29
.10.1177/002215540305100104
32.
Lieber
,
R. L.
,
Yeh
,
Y.
, and
Baskin
,
R. J.
,
1984
, “
Sarcomere Length Determination Using Laser Diffraction. Effect of Beam and Fiber Diameter
,”
Biophys. J.
,
45
(
5
), pp.
1007
1016
.10.1016/S0006-3495(84)84246-0
33.
Krivickas
,
L. S.
,
Dorer
,
D. J.
,
Ochala
,
J.
, and
Frontera
,
W. R.
,
2011
, “
Relationship Between Force and Size in Human Single Muscle Fibres
,”
Exp. Physiol.
,
96
(
5
), pp.
539
547
.10.1113/expphysiol.2010.055269
34.
Ochala
,
J.
,
Frontera
,
W. R.
,
Dorer
,
D. J.
,
Hoecke
,
J. V.
, and
Krivickas
,
L. S.
,
2007
, “
Single Skeletal Muscle Fiber Elastic and Contractile Characteristics in Young and Older Men
,”
J. Gerontol. Ser. A: Biol. Sci. Med. Sci.
,
62
(
4
), pp.
375
381
.10.1093/gerona/62.4.375
35.
Staron
,
R. S.
,
Hagerman
,
F. C.
,
Hikida
,
R. S.
,
Murray
,
T. F.
,
Hostler
,
D. P.
,
Crill
,
M. T.
,
Ragg
,
K. E.
, and
Toma
,
K.
,
2000
, “
Fiber Type Composition of the Vastus Lateralis Muscle of Young Men and Women
,”
J. Histochem. Cytochem.
,
48
(
5
), pp.
623
629
.10.1177/002215540004800506
36.
Purslow
,
P. P.
,
2002
, “
The Structure and Functional Significance of Variations of the Connective Tissue Within Muscle
,”
Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol.
,
133
(
4
), pp.
947
966
.10.1016/S1095-6433(02)00141-1
37.
Meyer
,
G. A.
, and
Lieber
,
R. L.
,
2011
, “
Elucidation of Extracellular Matrix Mechanics From Muscle Fibers and Fiber Bundles
,”
J. Biomech.
,
44
(
4
), pp.
771
773
.10.1016/j.jbiomech.2010.10.044
38.
Ford
,
L.-E.
, and
Podolsky
,
R. J.
,
1972
, “
Calcium Uptake and Force Development by Skinned Muscle Fibres in EGTA Buffered Solutions
,”
J Physiol.
,
223
(
1
), pp.
1
19
.10.1113/jphysiol.1972.sp009830
39.
Godt
,
R. E.
,
1974
, “
Ca++-Activated Tension of Skinned Muscle Fibres: Dependence on MgATP Concentration
,”
J. Gen. Physiol.
,
63
(
6
), pp.
722
39
.10.1085/jgp.63.6.722
40.
Moss
,
R. L.
,
1979
, “
Sarcomere Length-Tension Relations of Frog Skinned Muscle Fibres During Calcium Activation at Short Lengths
,”
J. Physiol.
,
292
(
1
), pp.
177
192
.10.1113/jphysiol.1979.sp012845
41.
Brynnel
,
A.
,
Hernandez
,
Y.
,
Kiss
,
B.
,
Lindqvist
,
J.
,
Adler
,
M.
,
Kolb
,
J.
,
Van der Pijl
,
R.
,
Gohlke
,
J.
,
Strom
,
J.
,
Smith
,
J. E.
, and
Granzier
,
H. L.
,
2019
, “
Downsizing the Giant Titin Reveals Its Dominant Roles in Skeletal Muscle Passive Stiffness and Longitudinal Hypertrophy
,”
Biophys. J.
,
116
(
3
), p.
403
.10.1016/j.bpj.2018.11.2178
42.
Zwambag
,
D. P.
,
Gsell
,
K. Y.
, and
Brown
,
S. H.
,
2019
, “
Characterization of the Passive Mechanical Properties of Spine Muscles Across Species
,”
J. Biomech.
,
88
, pp.
173
179
.10.1016/j.jbiomech.2019.03.036
43.
Son
,
J.
,
Indresano
,
A.
,
Sheppard
,
K.
,
Ward
,
S. R.
, and
Lieber
,
R. L.
,
2018
, “
Intraoperative and Biomechanical Studies of Human Vastus Lateralis and Vastus Medialis Sarcomere Length Operating Range
,”
J. Biomech.
,
67
, pp.
91
97
.10.1016/j.jbiomech.2017.11.038
44.
Vracko
,
R.
, and
Benditt
,
E. P.
,
1972
, “
Basal Lamina: The Scaffold for Orderly Cell Replacement: Observations on Regeneration of Injured Skeletal Muscle Fibers and Capillaries
,”
J. Cell Biol.
,
55
(
2
), pp.
406
419
.10.1083/jcb.55.2.406
45.
Timpl
,
R.
, and
Brown
,
J. C.
,
1996
, “
Supramolecular Assembly of Basement Membranes
,”
Bioessays
,
18
(
2
), pp.
123
132
.10.1002/bies.950180208
46.
Heathcote
,
J. G.
, and
Grant
,
M. E.
,
1981
, “
The Molecular Organization of Basement Membranes
,”
International Review of Connective Tissue Research
, Vol. 9,
Elsevier, Amsterdam, The Netherlands, pp.
191
264
.10.1016/b978-0-12-363709-3.50011-5
47.
Grounds
,
M. D.
,
Sorokin
,
L.
, and
White
,
J.
,
2005
, “
Strength at the Extracellular Matrix–Muscle Interface
,”
Scand. J. Med. Sci. Sports
,
15
(
6
), pp.
381
391
.10.1111/j.1600-0838.2005.00467.x
You do not currently have access to this content.