Abstract

Temporomandibular joint (TMJ) disorders (TMDs) are not well understood and the mechanical differences between the regions of the mandibular condylar cartilage (MCC) and the TMJ disc have not been thoroughly compared. As of now, there are no commercially available regenerative therapies for the TMJ. Elucidating the mechanical properties of these two structures of the articulating joint will help future efforts in developing tissue engineering treatments of the TMJ. In this study, we evaluate the compressive properties of the porcine disc and mandibular condylar cartilage by performing unconfined compression at 10% strain with 4.5%/min strain rate. Punches (4 mm biopsy) from both tissues were taken from five different regions of both the MCC and TMJ: anterior, posterior, lateral, medial, and central. Previously, theoretical models of compression in the porcine tissue did not fit the whole ramp-relaxation behavior. Thus, the data stress–relaxation was fitted to the biphasic transversely isotropic model, for both the TMJ disc and cartilage. From the results found in the disc, it was found that the posterior region had the highest values in multiple viscoelastic parameters when compared to the other regions. The mandibular condylar cartilage was only found to be significantly different in the transverse modulus between the posterior and lateral regions. Both the TMJ disc and MCC had similar magnitudes of values (for the modulus and other corresponding compressive properties) and behavior under this testing modality.

References

References
1.
Tjakkes
,
G. H.
,
Reinders
,
J. J.
,
Tenvergert
,
E. M.
, and
Stegenga
,
B.
,
2010
, “
TMD Pain: The Effect on Health Related Quality of Life and the Influence of Pain Duration
,”
Health Qual. Life Outcomes
,
8
(
1
), p.
46
.10.1186/1477-7525-8-46
2.
Wilkes
,
C. H.
,
1989
, “
Internal Derangements of the Temporomandibular Joint. Pathological Variations
,”
Arch. Otolaryngol. Head Neck Surg.
,
115
(
4
), pp.
469
477
.10.1001/archotol.1989.01860280067019
3.
National Institute of Dental and Craniofacial Research
, 2020, “
TMJ Disorders,”
National Institute of Dental and Craniofacial Research, accessed Apr. 23, 2020, nidcr.nih.gov
4.
Moreira
,
C. V. A.
,
Serra
,
A. V. P.
,
Silva
,
L. O. R.
,
Fernandes
,
A. C. F.
, and
de Azevedo
,
R. A.
,
2018
, “
Total Bilateral TMJ Reconstruction for Pain and Dysfunction: Case Report
,”
Int. J. Surg. Case Rep.
,
42
, pp.
138
144
.10.1016/j.ijscr.2017.11.063
5.
Wolford
,
L. M.
, and
Mehra
,
P.
,
2000
, “
Custom-Made Total Joint Prostheses for Temporomandibular Joint Reconstruction
,”
Proc. (Bayl Univ. Med. Cent.)
,
13
(
2
), pp.
135
138
.10.1080/08998280.2000.11927656
6.
Lamela
,
M. J.
,
Fernandez
,
P.
,
Ramos
,
A.
,
Fernandez-Canteli
,
A.
, and
Tanaka
,
E.
,
2013
, “
Dynamic Compressive Properties of Articular Cartilages in the Porcine Temporomandibular Joint
,”
J. Mech. Behav. Biomed.
,
23
, pp.
62
70
.10.1016/j.jmbbm.2013.04.006
7.
Lamela
,
M. J.
,
Prado
,
Y.
,
Fernandez
,
P.
,
Fernandez-Canteli
,
A.
, and
Tanaka
,
E.
,
2011
, “
Non-Linear Viscoelastic Model for Behaviour Characterization of Temporomandibular Joint Discs
,”
Exp. Mech.
,
51
(
8
), pp.
1435
1440
.10.1007/s11340-011-9465-4
8.
Fernandez
,
P.
,
Lamela
,
M. J.
,
Ramos
,
A.
,
Fernandez-Canteli
,
A.
, and
Tanaka
,
E.
,
2013
, “
The Region-Dependent Dynamic Properties of Porcine Temporomandibular Joint Disc Under Unconfined Compression
,”
J. Biomech.
,
46
(
4
), pp.
845
848
.10.1016/j.jbiomech.2012.11.035
9.
Commisso
,
M. S.
,
Calvo-Gallego
,
J. L.
,
Mayo
,
J.
,
Tanaka
,
E.
, and
Martínez-Reina
,
J.
,
2016
, “
Quasi-Linear Viscoelastic Model of the Articular Disc of the Temporomandibular Joint
,”
Exp. Mech.
,
56
(
7
), pp.
1169
1177
.10.1007/s11340-016-0161-2
10.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
,
2006
, “
Viscoelastic Characterization of the Porcine Temporomandibular Joint Disc Under Unconfined Compression
,”
J. Biomech.
,
39
(
2
), pp.
312
322
.10.1016/j.jbiomech.2004.11.012
11.
Singh
,
M.
, and
Detamore
,
M. S.
,
2009
, “
Stress Relaxation Behavior of Mandibular Condylar Cartilage Under High-Strain Compression
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061008
.10.1115/1.3118776
12.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress-Relaxation of Articular-Cartilage in Compression—Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
13.
Kim
,
K. W.
,
Wong
,
M. E.
,
Helfrick
,
J. F.
,
Thomas
,
J. B.
, and
Athanasiou
,
K. A.
,
2003
, “
Biomechanical Tissue Characterization of the Superior Joint Space of the Porcine Temporomandibular Joint
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
924
930
.10.1114/1.1591190
14.
Hagandora
,
C. K.
,
Chase
,
T. W.
, and
Almarza
,
A. J.
,
2011
, “
A Comparison of the Mechanical Properties of the Goat Temporomandibular Joint Disc to the Mandibular Condylar Cartilage in Unconfined Compression
,”
J. Dent. Biomech.
,
2011
, pp.
205
206
.10.1115/SBC2011-53173
15.
Lowe
,
J.
,
Bansal
,
R.
,
Badylak
,
S.
,
Brown
,
B.
,
Chung
,
W.
, and
Almarza
,
A.
,
2018
, “
Properties of the Temporomandibular Joint in Growing Pigs
,”
ASME J. Biomech. Eng.
, 140(7), p.
071002
.10.1115/1.4039624
16.
Lempriere
,
B. M.
,
1968
, “
Poissons Ratio in Orthotropic Materials
,”
AIAA J.
,
6
(
11
), pp.
2226
2227
.10.2514/3.4974
17.
Almarza
,
A. J.
,
Brown
,
B. N.
,
Arzi
,
B.
,
Ângelo
,
D. F.
,
Chung
,
W.
,
Badylak
,
S. F.
, and
Detamore
,
M.
,
2018
, “
Preclinical Animal Models for Temporomandibular Joint Tissue Engineering
,”
Tissue Eng. Part B Rev.
,
24
(
3
), pp.
171
178
.10.1089/ten.teb.2017.0341
18.
Almarza
,
A. J.
,
Hagandora
,
C. K.
, and
Henderson
,
S. E.
,
2011
, “
Animal Models of Temporomandibular Joint Disorders: Implications for Tissue Engineering Approaches
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2479
2490
.10.1007/s10439-011-0364-8
19.
Kalpakci
,
K. N.
,
Willard
,
V. P.
,
Wong
,
M. E.
, and
Athanasiou
,
K. A.
,
2011
, “
An Interspecies Comparison of the Temporomandibular Joint Disc
,”
J. Dent. Res.
,
90
(
2
), pp.
193
198
.10.1177/0022034510381501
20.
Chandrasekaran
,
P.
,
Doyran
,
B.
,
Li
,
Q.
,
Han
,
B.
,
Bechtold
,
T. E.
,
Koyama
,
E.
,
Lu
,
X. L.
, and
Han
,
L.
,.
2017
, “
Biomechanical Properties of Murine TMJ Articular Disc and Condyle Cartilage Via AFM-Nanoindentation
,”
J. Biomech.
,
60
, pp.
134
141
.10.1016/j.jbiomech.2017.06.031
21.
Kuroda
,
S.
,
Tanimoto
,
K.
,
Izawa
,
T.
,
Fujihara
,
S.
,
Koolstra
,
J. H.
, and
Tanaka
,
E.
,
2009
, “
Biomechanical and Biochemical Characteristics of the Mandibular Condylar Cartilage
,”
Osteoarthritis Cartilage
,
17
(
11
), pp.
1408
1415
.10.1016/j.joca.2009.04.025
22.
Manfredini
,
D.
, and
Lobbezoo
,
F.
,
2010
, “
Relationship Between Bruxism and Temporomandibular Disorders: A Systematic Review of Literature From 1998 to 2008
,”
Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endod.
,
109
(
6
), pp.
e26
e50
.10.1016/j.tripleo.2010.02.013
You do not currently have access to this content.