Abstract

Cell-generated tractions play an important role in various physiological and pathological processes such as stem-cell differentiation, cell migration, wound healing, and cancer metastasis. Traction force microscopy (TFM) is a technique for quantifying cellular tractions during cell–matrix interactions. Most applications of this technique have heretofore assumed that the matrix surrounding the cells is linear elastic and undergoes infinitesimal strains, but recent experiments have shown that the traction-induced strains can be large (e.g., more than 50%). In this paper, we propose a novel three-dimensional (3D) TFM approach that consistently accounts for both the geometric nonlinearity introduced by large strains in the matrix, and the material nonlinearity due to strain-stiffening of the matrix. In particular, we pose the TFM problem as a nonlinear inverse hyperelasticity problem in the stressed configuration of the matrix, with the objective of determining the cellular tractions that are consistent with the measured displacement field in the matrix. We formulate the inverse problem as a constrained minimization problem and develop an efficient adjoint-based minimization procedure to solve it. We first validate our approach using simulated data, and quantify its sensitivity to noise. We then employ the new approach to recover tractions exerted by NIH 3T3 cells fully encapsulated in hydrogel matrices of varying stiffness. We find that neglecting nonlinear effects can induce significant errors in traction reconstructions. We also find that cellular tractions roughly increase with gel stiffness, while the strain energy appears to saturate.

References

References
1.
Iskratsch
,
T.
,
Wolfenson
,
H.
, and
Sheetz
,
M. P.
,
2014
, “
Appreciating Force and Shape-the Rise of Mechanotransduction in Cell Biology
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
12
), pp.
825
833
.10.1038/nrm3903
2.
Mui
,
K. L.
,
Chen
,
C. S.
, and
Assoian
,
R. K.
,
2016
, “
The Mechanical Regulation of Integrin–Cadherin Crosstalk Organizes Cells, Signaling and Forces
,”
J. Cell Sci.
,
129
(
6
), pp.
1093
1100
.10.1242/jcs.183699
3.
Huang
,
S.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
,
1998
, “
Control of Cyclin d1, p27kip1, and Cell Cycle Progression in Human Capillary Endothelial Cells by Cell Shape and Cytoskeletal Tension
,”
Mol. Biol. Cell
,
9
(
11
), pp.
3179
3193
.10.1091/mbc.9.11.3179
4.
Li
,
L.
,
Eyckmans
,
J.
, and
Chen
,
C. S.
,
2017
, “
Designer Biomaterials for Mechanobiology
,”
Nat. Mater.
,
16
(
12
), pp.
1164
1168
.10.1038/nmat5049
5.
Schwarz
,
U. S.
, and
Soiné
,
J. R.
,
2015
, “
Traction Force Microscopy on Soft Elastic Substrates: A Guide to Recent Computational Advances
,”
Biochim. Biophys. Acta, Mol. Cell Res.
,
1853
(
11
), pp.
3095
3104
.10.1016/j.bbamcr.2015.05.028
6.
Koch
,
T. M.
,
Münster
,
S.
,
Bonakdar
,
N.
,
Butler
,
J. P.
, and
Fabry
,
B.
,
2012
, “
3D Traction Forces in Cancer Cell Invasion
,”
PLoS One
,
7
(
3
), p.
e33476
.10.1371/journal.pone.0033476
7.
Hur
,
S. S.
,
del Alamo
,
J. C.
,
Park
,
J. S.
,
Li
,
Y.-S.
,
Nguyen
,
H. A.
,
Teng
,
D.
,
Wang
,
K.-C.
,
Flores
,
L.
,
Alonso-Latorre
,
B.
,
Lasheras
,
J. C.
, and
Chien
,
S.
,
2012
, “
Roles of Cell Confluency and Fluid Shear in 3-Dimensional Intracellular Forces in Endothelial Cells
,”
Proc. Natl. Acad. Sci.
,
109
(
28
), pp.
11110
11115
.10.1073/pnas.1207326109
8.
Style
,
R. W.
,
Boltyanskiy
,
R.
,
German
,
G. K.
,
Hyland
,
C.
,
MacMinn
,
C. W.
,
Mertz
,
A. F.
,
Wilen
,
L. A.
,
Xu
,
Y.
, and
Dufresne
,
E. R.
,
2014
, “
Traction Force Microscopy in Physics and Biology
,”
Soft Matter
,
10
(
23
), pp.
4047
4055
.10.1039/c4sm00264d
9.
Mulligan
,
J. A.
,
Bordeleau
,
F.
,
Reinhart-King
,
C. A.
, and
Adie
,
S. G.
,
2018
, “
Traction Force Microscopy for Noninvasive Imaging of Cell Forces
,”
Biomechanics in Oncology
,
Springer
, Berlin, pp.
319
349
.10.1007/978-3-319-95294-9_15
10.
Polacheck
,
W. J.
, and
Chen
,
C. S.
,
2016
, “
Measuring Cell-Generated Forces: A Guide to the Available Tools
,”
Nat. Methods
,
13
(
5
), pp.
415
423
.10.1038/nmeth.3834
11.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci.
,
100
(
4
), pp.
1484
1489
.10.1073/pnas.0235407100
12.
Grashoff
,
C.
,
Hoffman
,
B. D.
,
Brenner
,
M. D.
,
Zhou
,
R.
,
Parsons
,
M.
,
Yang
,
M. T.
,
McLean
,
M. A.
,
Sligar
,
S. G.
,
Chen
,
C. S.
,
Ha
,
T.
, and
Schwartz
,
M. A.
,
2010
, “
Measuring Mechanical Tension Across Vinculin Reveals Regulation of Focal Adhesion Dynamics
,”
Nature
,
466
(
7303
), pp.
263
266
.10.1038/nature09198
13.
Oliver
,
T.
,
Jacobson
,
K.
, and
Dembo
,
M.
,
1995
, “
Traction Forces in Locomoting Cells
,”
Cell Motil. Cytoskeleton
,
31
(
3
), pp.
225
240
.10.1002/cm.970310306
14.
Dembo
,
M.
, and
Wang
,
Y.-L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
(
4
), pp.
2307
2316
.10.1016/S0006-3495(99)77386-8
15.
Butler
,
J. P.
,
Tolic-Nørrelykke
,
I. M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
Traction Fields, Moments, and Strain Energy That Cells Exert on Their Surroundings
,”
Am. J. Physiol.: Cell Physiol.
,
282
(
3
), pp.
C595
C605
.10.1152/ajpcell.00270.2001
16.
Sabass
,
B.
,
Gardel
,
M. L.
,
Waterman
,
C. M.
, and
Schwarz
,
U. S.
,
2008
, “
High Resolution Traction Force Microscopy Based on Experimental and Computational Advances
,”
Biophys. J.
,
94
(
1
), pp.
207
220
.10.1529/biophysj.107.113670
17.
Wang
,
J. H.
, and
Lin
,
J.-S.
,
2007
, “
Cell Traction Force and Measurement Methods
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
361
371
.10.1007/s10237-006-0068-4
18.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Course of Theoretical Physics: Theory and Elasticity
, Vol.
7
,
Pergamon Press
, Oxford, UK.10.1063/1.3057037
19.
Legant
,
W. R.
,
Choi
,
C. K.
,
Miller
,
J. S.
,
Shao
,
L.
,
Gao
,
L.
,
Betzig
,
E.
, and
Chen
,
C. S.
,
2013
, “
Multidimensional Traction Force Microscopy Reveals Out-of-Plane Rotational Moments About Focal Adhesions
,”
Proc. Natl. Acad. Sci.
,
110
(
3
), pp.
881
886
.10.1073/pnas.1207997110
20.
Franck
,
C.
,
Maskarinec
,
S. A.
,
Tirrell
,
D. A.
, and
Ravichandran
,
G.
,
2011
, “
Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions
,”
PLoS One
,
6
(
3
), p.
e17833
.10.1371/journal.pone.0017833
21.
Toyjanova
,
J.
,
Bar-Kochba
,
E.
,
López-Fagundo
,
C.
,
Reichner
,
J.
,
Hoffman-Kim
,
D.
, and
Franck
,
C.
,
2014
, “
High Resolution, Large Deformation 3D Traction Force Microscopy
,”
PLoS One
,
9
(
4
), p.
e90976
.10.1371/journal.pone.0090976
22.
Cukierman
,
E.
,
Pankov
,
R.
,
Stevens
,
D. R.
, and
Yamada
,
K. M.
,
2001
, “
Taking Cell-Matrix Adhesions to the Third Dimension
,”
Science
,
294
(
5547
), pp.
1708
1712
.10.1126/science.1064829
23.
Zaman
,
M. H.
,
Kamm
,
R. D.
,
Matsudaira
,
P.
, and
Lauffenburger
,
D. A.
,
2005
, “
Computational Model for Cell Migration in Three-Dimensional Matrices
,”
Biophys. J.
,
89
(
2
), pp.
1389
1397
.10.1529/biophysj.105.060723
24.
Legant
,
W. R.
,
Miller
,
J. S.
,
Blakely
,
B. L.
,
Cohen
,
D. M.
,
Genin
,
G. M.
, and
Chen
,
C. S.
,
2010
, “
Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices
,”
Nat. Methods
,
7
(
12
), pp.
969
971
.10.1038/nmeth.1531
25.
Hall
,
M. S.
,
Long
,
R.
,
Feng
,
X.
,
Huang
,
Y.
,
Hui
,
C.-Y.
, and
Wu
,
M.
,
2013
, “
Toward Single Cell Traction Microscopy Within 3D Collagen Matrices
,”
Exp. Cell Res.
,
319
(
16
), pp.
2396
2408
.10.1016/j.yexcr.2013.06.009
26.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.10.1038/nature03521
27.
Yang
,
Y-L.
, and
Kaufman
,
L. J.
,
2009
, “
Rheology and Confocal Reflectance Microscopy as Probes of Mechanical Properties and Structure During Collagen and Collagen/Hyaluronan Self-Assembly
,”
Biophys. J.
,
96
(
4
), pp.
1566
1585
.10.1016/j.bpj.2008.10.063
28.
Bar-Kochba
,
E.
,
Toyjanova
,
J.
,
Andrews
,
E.
,
Kim
,
K.-S.
, and
Franck
,
C.
,
2015
, “
A Fast Iterative Digital Volume Correlation Algorithm for Large Deformations
,”
Exp. Mech.
,
55
(
1
), pp.
261
274
.10.1007/s11340-014-9874-2
29.
Dong
,
L.
, and
Oberai
,
A. A.
,
2017
, “
Recovery of Cellular Traction in Three-Dimensional Nonlinear Hyperelastic Matrices
,”
Comput. Methods Appl. Mech. Eng.
,
314
, pp.
296
313
.10.1016/j.cma.2016.05.020
30.
Cóndor
,
M.
, and
García-Aznar
,
J.
,
2019
, “
An Iterative Finite Element-Based Method for Solving Inverse Problems in Traction Force Microscopy
,”
Comput. Methods Programs Biomed.
,
182
, p.
105056
.10.1016/j.cmpb.2019.105056
31.
Hall
,
M. S.
,
Long
,
R.
,
Hui
,
C.-Y.
, and
Wu
,
M.
,
2012
, “
Mapping Three-Dimensional Stress and Strain Fields Within a Soft Hydrogel Using a Fluorescence Microscope
,”
Biophys. J.
,
102
(
10
), pp.
2241
2250
.10.1016/j.bpj.2012.04.014
32.
Trappmann
,
B.
,
Baker
,
B. M.
,
Polacheck
,
W. J.
,
Choi
,
C. K.
,
Burdick
,
J. A.
, and
Chen
,
C. S.
,
2017
, “
Matrix Degradability Controls Multicellularity of 3D Cell Migration
,”
Nat. Commun.
,
8
(
1
), p.
371
.10.1038/s41467-017-00418-6
33.
Patterson
,
J.
, and
Hubbell
,
J. A.
,
2010
, “
Enhanced Proteolytic Degradation of Molecularly Engineered Peg Hydrogels in Response to MMP-1 and MMP-2
,”
Biomaterials
,
31
(
30
), pp.
7836
7845
.10.1016/j.biomaterials.2010.06.061
34.
Patterson
,
J.
, and
Hubbell
,
J. A.
,
2011
, “
Sparc-Derived Protease Substrates to Enhance the Plasmin Sensitivity of Molecularly Engineered Peg Hydrogels
,”
Biomaterials
,
32
(
5
), pp.
1301
1310
.10.1016/j.biomaterials.2010.10.016
35.
Yoon
,
C.
,
Choi
,
C.
,
Stapleton
,
S.
,
Mirabella
,
T.
,
Howes
,
C.
,
Dong
,
L.
,
King
,
J.
,
Yang
,
J.
,
Oberai
,
A.
,
Eyckmans
,
J.
, and
Chen
,
C. S.
,
2019
, “
Myosin Iia–Mediated Forces Regulate Multicellular Integrity During Vascular Sprouting
,”
Mol. Biol. Cell
,
30
(
16
), pp.
1974
1984
.10.1091/mbc.E19-02-0076
36.
Piotrowski
,
A. S.
,
Varner
,
V. D.
,
Gjorevski
,
N.
, and
Nelson
,
C. M.
,
2015
, “
Three-Dimensional Traction Force Microscopy of Engineered Epithelial Tissues
,”
Tissue Morphogenesis
,
Springer
, Berlin, pp.
191
206
.
37.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(
3
), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
38.
Klaas
,
O.
,
Beall
,
M. W.
, and
Shephard
,
M. S.
,
2013
, “
Construction of Models and Meshes of Heterogeneous Material Microstructures From Image Data
,”
Image-Based Geometric Modeling and Mesh Generation
,
Springer
, Berlin, pp.
171
193
.10.1007/978-94-007-4255-0_10
39.
Mangado
,
N.
,
Piella
,
G.
,
Noailly
,
J.
,
Pons-Prats
,
J.
, and
Ballester
,
M. Á. G.
,
2016
, “
Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation
,”
Front. Bioeng. Biotechnol.
,
4
, p.
85
.10.3389/fbioe.2016.00085
40.
Beall
,
M. W.
, and
Shephard
,
M. S.
,
1997
, “
A General Topology-Based Mesh Data Structure
,”
Int. J. Numer. Methods Eng.
,
40
(
9
), pp.
1573
1596
.10.1002/(SICI)1097-0207(19970515)40:9<1573::AID-NME128>3.0.CO;2-9
41.
O'Bara
,
R. M.
,
Beall
,
M. W.
, and
Shephard
,
M. S.
,
2002
, “
Attribute Management System for Engineering Analysis
,”
Eng. Comput.
,
18
(
4
), pp.
339
351
.10.1007/s003660200030
42.
Rattan
,
S.
,
Li
,
L.
,
Lau
,
H. K.
,
Crosby
,
A. J.
, and
Kiick
,
K. L.
,
2018
, “
Micromechanical Characterization of Soft, Biopolymeric Hydrogels: Stiffness, Resilience, and Failure
,”
Soft Matter
,
14
(
18
), pp.
3478
3489
.10.1039/C8SM00501J
43.
Goenezen
,
S.
,
Barbone
,
P.
, and
Oberai
,
A. A.
,
2011
, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Incompressible Case
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1406
1420
.10.1016/j.cma.2010.12.018
44.
Govindjee
,
S.
, and
Mihalic
,
P. A.
,
1996
, “
Computational Methods for Inverse Finite Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
,
136
(
1–2
), pp.
47
57
.10.1016/0045-7825(96)01045-6
45.
Govindjee
,
S.
, and
Mihalic
,
P. A.
,
1998
, “
Computational Methods for Inverse Deformations in Quasi-Incompressible Finite Elasticity
,”
Int. J. Numer. Methods Eng.
,
43
(
5
), pp.
821
838
.10.1002/(SICI)1097-0207(19981115)43:5<821::AID-NME453>3.0.CO;2-C
46.
Klaas
,
O.
,
Maniatty
,
A.
, and
Shephard
,
M. S.
,
1999
, “
A Stabilized Mixed Finite Element Method for Finite Elasticity.: Formulation for Linear Displacement and Pressure Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
180
(
1–2
), pp.
65
79
.10.1016/S0045-7825(99)00059-6
47.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
.10.1137/0916069
48.
Oberai
,
A. A.
,
Gokhale
,
N. H.
, and
Feijóo
,
G. R.
,
2003
, “
Solution of Inverse Problems in Elasticity Imaging Using the Adjoint Method
,”
Inverse Probl.
,
19
(
2
), pp.
297
313
.10.1088/0266-5611/19/2/304
49.
Gokhale
,
N. H.
,
Barbone
,
P. E.
, and
Oberai
,
A. A.
,
2008
, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Compressible Case
,”
Inverse Probl.
,
24
(
4
), p.
045010
.10.1088/0266-5611/24/4/045010
50.
Vogel
,
C. R.
,
2002
,
Computational Methods for Inverse Problems
, Vol.
23
,
SIAM
, Philadelphia, PA.10.1137/1.9780898717570
51.
Picu
,
R.
,
Deogekar
,
S.
, and
Islam
,
M.
,
2018
, “
Poisson's Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
021002
.10.1115/1.4038428
52.
Lake
,
S. P.
, and
Barocas
,
V. H.
,
2011
, “
Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1891
1903
.10.1007/s10439-011-0298-1
53.
Song
,
D.
,
Hugenberg
,
N.
, and
Oberai
,
A. A.
,
2019
, “
Three-Dimensional Traction Microscopy With a Fiber-Based Constitutive Model
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112579
.10.1016/j.cma.2019.112579
54.
Soiné
,
J. R.
,
Brand
,
C. A.
,
Stricker
,
J.
,
Oakes
,
P. W.
,
Gardel
,
M. L.
, and
Schwarz
,
U. S.
,
2015
, “
Model-Based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles
,”
PLoS Comput. Biol.
,
11
(
3
), p.
e1004076
.10.1371/journal.pcbi.1004076
55.
Paszek
,
M. J.
,
Zahir
,
N.
,
Johnson
,
K. R.
,
Lakins
,
J. N.
,
Rozenberg
,
G. I.
,
Gefen
,
A.
,
Reinhart-King
,
C. A.
,
Margulies
,
S. S.
,
Dembo
,
M.
,
Boettiger
,
D.
,
Hammer
,
D. A.
, and
Weaver
,
V. M.
,
2005
, “
Tensional Homeostasis and the Malignant Phenotype
,”
Cancer Cell
,
8
(
3
), pp.
241
254
.10.1016/j.ccr.2005.08.010
56.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y-L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.10.1126/science.1116995
57.
Wisdom
,
K. M.
,
Adebowale
,
K.
,
Chang
,
J.
,
Lee
,
J. Y.
,
Nam
,
S.
,
Desai
,
R.
,
Rossen
,
N. S.
,
Rafat
,
M.
,
West
,
R. B.
,
Hodgson
,
L.
, and
Chaudhuri
,
O.
,
2018
, “
Matrix Mechanical Plasticity Regulates Cancer Cell Migration Through Confining Microenvironments
,”
Nat. Commun.
,
9
(
1
), p.
4144
.10.1038/s41467-018-06641-z
58.
Ghibaudo
,
M.
,
Saez
,
A.
,
Trichet
,
L.
,
Xayaphoummine
,
A.
,
Browaeys
,
J.
,
Silberzan
,
P.
,
Buguin
,
A.
, and
Ladoux
,
B.
,
2008
, “
Traction Forces and Rigidity Sensing Regulate Cell Functions
,”
Soft Matter
,
4
(
9
), pp.
1836
1843
.10.1039/b804103b
59.
Tee
,
S.-Y.
,
Fu
,
J.
,
Chen
,
C. S.
, and
Janmey
,
P. A.
,
2011
, “
Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness
,”
Biophys. J.
,
100
(
5
), pp.
L25
L27
.10.1016/j.bpj.2010.12.3744
60.
Califano
,
J. P.
, and
Reinhart-King
,
C. A.
,
2010
, “
Substrate Stiffness and Cell Area Predict Cellular Traction Stresses in Single Cells and Cells in Contact
,”
Cell. Mol. Bioeng.
,
3
(
1
), pp.
68
75
.10.1007/s12195-010-0102-6
61.
Ron
,
A.
,
Azeloglu
,
E. U.
,
Calizo
,
R. C.
,
Hu
,
M.
,
Bhattacharya
,
S.
,
Chen
,
Y.
,
Jayaraman
,
G.
,
Lee
,
S.
,
Neves-Zaph
,
S. R.
,
Li
,
H.
,
Gordon
,
R. E.
,
He
,
J. C.
,
Hone
,
J. C.
, and
Iyengar
,
R.
,
2017
, “
Cell Shape Information is Transduced Through Tension-Independent Mechanisms
,”
Nat. Commun.
,
8
(
1
), p.
2145
.10.1038/s41467-017-02218-4
62.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and Rhoa Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.10.1016/S1534-5807(04)00075-9
63.
Chen
,
C. S.
,
Mrksich
,
M.
,
Huang
,
S.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
1997
, “
Geometric Control of Cell Life and Death
,”
Science
,
276
(
5317
), pp.
1425
1428
.10.1126/science.276.5317.1425
You do not currently have access to this content.