Abstract

Mild traumatic brain injuries are typically caused by nonpenetrating head impacts that accelerate the skull and result in deformation of the brain within the skull. The shear and compressive strains caused by these deformations damage neural and vascular structures and impair their function. Accurate head acceleration measurements are necessary to define the nature of the insult to the brain. A novel murine head tracking system was developed to improve the accuracy and efficiency of kinematic measurements obtained with high-speed videography. A three-dimensional (3D)-printed marker carrier was designed for rigid fixation to the upper jaw and incisors with an elastic strap around the snout. The system was evaluated by impacting cadaveric mice with the closed head impact model of engineered rotational acceleration (CHIMERA) system using an energy of 0.7 J (5.29 m/s). We compared the performance of the head-marker system to the previously used skin-tracking method and documented significant improvements in measurement repeatability (aggregate coefficient of variation (CV) within raters from 15.8 to 1.5 and between raters from 15.5 to 1.5), agreement (aggregate percentage error from 24.9 to 8.7), and temporal response (aggregate temporal curve agreement from 0.668 to 0.941). Additionally, the new system allows for automated software tracking, which dramatically decreases the analysis time required (74% reduction). This novel head tracking system for mice offers an efficient, reliable, and real-time method to measure head kinematics during high-speed impacts using CHIMERA or other rodent or small mammal head impact models.

References

References
1.
GA Centers for Disease Control and Prevention
,
2015
, “
Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation
,”
National Center for Injury Prevention and Control
; Division of Unintentional Injury Prevention, Atlanta, GA.https://www.cdc.gov/traumaticbraininjury/pubs/congress_epi_rehab.html
2.
Finkelstein
,
E.
,
Corso
,
P.
, and
Miller
,
T.
,
2006
,
Incidence and Economic Burden of Injuries in the United States
,
Oxford University Press
, Oxford, UK.
3.
Graham
,
D. I.
,
Adams
,
J. H.
,
Nicoll
,
J. A.
,
Maxwell
,
W. L.
, and
Gennarelli
,
T. A.
,
1995
, “
The Nature, Distribution and Causes of Traumatic Brain Injury
,”
Brain Pathol. (Zurich, Switzerland)
,
5
(
4
), pp.
397
406
.10.1111/j.1750-3639.1995.tb00618.x
4.
Meaney
,
D. F.
, and
Smith
,
D. H.
,
2011
, “
Biomechanics of Concussion
,”
Clin. Sports Med.
,
30
(
1
), pp.
19
31
.10.1016/j.csm.2010.08.009
5.
King
,
A. I.
,
2017
, “
Basics of the Biomechanics of Brain Injury
,”
The Biomechanics of Impact Injury: Biomechanical Response, Mechanisms of Injury, Human Tolerance and Simulation
,
Springer
, Cham, Switzerland.10.1007/978-3-319-49792-1_2
6.
King
,
A. I.
,
Yang
,
K. H.
,
Liying
,
Z.
,
Warren
,
H.
, and
Viano
,
D. C.
,
2003
, “
Is Head Injury Caused by Linear or Angular Acceleration?
,”
IRCOBI
Conference, Lisbon, Portugal, Sept. 25–26, pp.
1
12
.https://www.researchgate.net/publication/242211067_Is_Head_Injury_Caused_by_Linear_or_Angular_Acceleration
7.
Kleiven
,
S.
,
2013
, “
Why Most Traumatic Brain Injuries Are Not Caused by Linear Acceleration but Skull Fractures Are
,”
Front. Bioeng. Biotechnol.
,
1
, p.
15
.10.3389/fbioe.2013.00015
8.
Lissner
,
H. R.
,
Lebow
,
M.
, and
Evans
,
F. G.
,
1960
, “
Experimental Studies on the Relation Between Acceleration and Intracranial Pressure Changes in Man
,”
Surg., Gynecol. Obstet.
,
111
, pp.
329
338
.
9.
Margulies
,
S. S.
, and
Thibault
,
L. E.
,
1992
, “
A Proposed Tolerance Criterion for Diffuse Axonal Injury in Man
,”
J. Biomech.
,
25
(
8
), pp.
917
923
.10.1016/0021-9290(92)90231-O
10.
Newman
,
J. A.
,
1998
, “
Kinematics of Head Injury
,”
Frontiers in Head and Neck Trauma, Clinical and Biomechanical
,
N.
Yoganandan
,
F. A.
Pintar
,
S.
Larson
, and
A.
Sances
Jr
, eds.,
IOS Press
, Amsterdam, The Netherlands.https://www.researchgate.net/publication/242211067_Is_Head_Injury_Caused_by_Linear_or_Angular_Acceleration
11.
Ommaya
,
A. K.
,
Goldsmith
,
W.
, and
Thibault
,
L.
,
2002
, “
Biomechanics and Neuropathology of Adult and Paediatric Head Injury
,”
Br. J. Neurosurg.
,
16
(
3
), pp.
220
242
.10.1080/02688690220148824
12.
Franklyn
,
M.
,
Fildes
,
B.
,
Zhang
,
L.
,
Yang
,
K.
, and
Sparke
,
L.
,
2005
, “
Analysis of Finite Element Models for Head Injury Investigation: Reconstruction of Four Real-World Impacts
,”
Stapp Car Crash J.
,
49
, pp.
1
32
.10.4271/2005-22-0001
13.
Kleiven
,
S.
,
2007
, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
Stapp Car Crash J.
,
51
, pp.
81
114.
10.4271/2007-22-0003
14.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
15.
Namjoshi
,
D. R.
,
Good
,
C.
,
Cheng
,
W. H.
,
Panenka
,
W.
,
Richards
,
D.
,
Cripton
,
P. A.
, and
Wellington
,
C. L.
,
2013
, “
Towards Clinical Management of Traumatic Brain Injury: A Review of Models and Mechanisms From a Biomechanical Perspective
,”
Dis. Models Mech.
,
6
(
6
), pp.
1325
1338
.10.1242/dmm.011320
16.
Angoa-Pérez
,
M.
,
Kane
,
M. J.
,
Briggs
,
D. I.
,
Herrera-Mundo
,
N.
,
Viano
,
D. C.
, and
Kuhn
,
D. M.
,
2014
, “
Animal Models of Sports-Related Head Injury: Bridging the Gap Between Pre-Clinical Research and Clinical Reality
,”
J. Neurochem.
,
129
(
6
), pp.
916
931
.10.1111/jnc.12690
17.
Namjoshi
,
D. R.
,
Cheng
,
W.
,
McInnes
,
K. A.
,
Martens
,
K. M.
,
Carr
,
M.
,
Wilkinson
,
A.
,
Fan
,
J.
,
Robert
,
J.
,
Hayat
,
A.
,
Cripton
,
P. A.
, and
Wellington
,
C. L.
,
2014
, “
Merging Pathology With Biomechanics Using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): A Novel, Surgery-Free Model of Traumatic Brain Injury
,”
Mol. Neurodegener.
,
9
(
1
), p.
55
.10.1186/1750-1326-9-55
18.
Namjoshi
,
D. R.
,
Cheng
,
W. H.
,
Bashir
,
A.
,
Wilkinson
,
A.
,
Stukas
,
S.
,
Martens
,
K. M.
,
Whyte
,
T.
,
Abebe
,
Z. A.
,
McInnes
,
K. A.
,
Cripton
,
P. A.
, and
Wellington
,
C. L.
,
2017
, “
Defining the Biomechanical and Biological Threshold of Murine Mild Traumatic Brain Injury Using CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration)
,”
Exp. Neurol.
,
292
, pp.
80
91
.10.1016/j.expneurol.2017.03.003
19.
Abel
,
J. M.
,
Gennarelli
,
T. A.
, and
Segawa
,
H.
,
1978
, “
Incidence and Severity of Cerebral Concussion in the Rhesus Monkey Following Sagittal Plane Angular Acceleration
,”
SAE Trans.
,
87
, p.
780874
.10.4271/780886
20.
Davidsson
,
J.
, and
Risling
,
M.
,
2011
, “
A New Model to Produce Sagittal Plane Rotational Induced Diffuse Axonal Injuries
,”
Front. Neurol.
,
2
, p.
41
.10.3389/fneur.2011.00041
21.
Gennarelli
,
T. A.
,
Thibault
,
L. E.
, and
Ommaya
,
A. K.
,
1972
,
Comparison of Translational and Rotational Head Motions in Experimental Cerebral Concussion
, Stapp Car Crash Conference. Fifteenth Proceedings, SAE, New York, pp.
797
803
.
22.
Meaney
,
D. F.
,
Smith
,
D. H.
,
Shreiber
,
D. I.
,
Bain
,
A. C.
,
Miller
,
R. T.
,
Ross
,
D. T.
, and
Gennarelli
,
T. A.
,
1995
, “
Biomechanical Analysis of Experimental Diffuse Axonal Injury
,”
J. Neurotrauma
,
12
(
4
), pp.
689
694
.10.1089/neu.1995.12.689
23.
Ono
,
K.
,
Kikuchi
,
A.
,
Nakamura
,
M.
,
Kobayashi
,
H.
, and
Nakamura
,
N.
, “
Human Head Tolerance to Sagittal Impact Reliable Estimation Deduced From Experimental Head Injury Using Subhuman Primates and Human Cadaver Skulls
,”
SAE
Paper No. 801303. 10.4271/801303
24.
Anderson
,
R. W. G.
,
Brown
,
C. J.
,
Blumbergs
,
P. C.
,
McLean
,
A. J.
, and
Jones
,
N. R.
,
2003
, “
Impact Mechanics and Axonal Injury in a Sheep Model
,”
J. Neurotrauma
,
20
(
10
), pp.
961
974
.10.1089/089771503770195812
25.
Li
,
Y.
,
Zhang
,
L.
,
Kallakuri
,
S.
,
Zhou
,
R.
, and
Cavanaugh
,
J. M.
,
2011
, “
Quantitative Relationship Between Axonal Injury and Mechanical Response in a Rodent Head Impact Acceleration Model
,”
J. Neurotrauma
,
28
(
9
), pp.
1767
1782
.10.1089/neu.2010.1687
26.
Viano
,
D. C.
,
Hamberger
,
A.
,
Bolouri
,
H.
, and
Säljö
,
A.
,
2009
, “
Concussion in Professional Football: Animal Model of Brain Injury–Part 15
,”
Neurosurgery
,
64
(
6
), pp.
1162
1173
.10.1227/01.NEU.0000345863.99099.C7
27.
Wojnarowicz
,
M. W.
,
Fisher
,
A. M.
,
Minaeva
,
O.
, and
Goldstein
,
L. E.
,
2017
, “
Considerations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathy—These Matters Matter
,”
Front. Neurol.
,
8
, p. 240.10.3389/fneur.2017.00240
28.
Rowson
,
B.
,
Tyson
,
A.
,
Rowson
,
S.
, and
Duma
,
S.
,
2018
, “
Chapter 23—Measuring Head Impacts: Accelerometers and Other Sensors
,”
Handbook of Clinical Neurology
, Vol.
158
,
B.
Hainline
,
R. A.
Stern
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
235
243
.10.1016/B978-0-444-63954-7.00023-9
29.
Goldstein
,
L. E.
,
Fisher
,
A. M.
,
Tagge
,
C. A.
,
Zhang
,
X.-L.
,
Velisek
,
L.
,
Sullivan
,
J. A.
,
Upreti
,
C.
,
Kracht
,
J. M.
,
Ericsson
,
M.
,
Wojnarowicz
,
M. W.
,
Goletiani
,
C. J.
,
Maglakelidze
,
G. M.
,
Casey
,
N.
,
Moncaster
,
J. A.
,
Minaeva
,
O.
,
Moir
,
R. D.
,
Nowinski
,
C. J.
,
Stern
,
R. A.
,
Cantu
,
R. C.
,
Geiling
,
J.
,
Blusztajn
,
J. K.
,
Wolozin
,
B. L.
,
Ikezu
,
T.
,
Stein
,
T. D.
,
Budson
,
A. E.
,
Kowall
,
N. W.
,
Chargin
,
D.
,
Sharon
,
A.
,
Saman
,
S.
,
Hall
,
G. F.
,
Moss
,
W. C.
,
Cleveland
,
R. O.
,
Tanzi
,
R. E.
,
Stanton
,
P. K.
, and
McKee
,
A. C.
,
2012
, “
Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model
,”
Sci. Transl. Med.
,
4
(
134
), p.
134ra60
.10.1126/scitranslmed.3003716
30.
Tagge
,
C. A.
,
Fisher
,
A. M.
,
Minaeva
,
O. V.
,
Gaudreau-Balderrama
,
A.
,
Moncaster
,
J. A.
,
Zhang
,
X.-L.
,
Wojnarowicz
,
M. W.
,
Casey
,
N.
,
Lu
,
H.
,
Kokiko-Cochran
,
O. N.
,
Saman
,
S.
,
Ericsson
,
M.
,
Onos
,
K. D.
,
Veksler
,
R.
,
Senatorov
,
V. V.
,
Kondo
,
A.
,
Zhou
,
X. Z.
,
Miry
,
O.
,
Vose
,
L. R.
,
Gopaul
,
K. R.
,
Upreti
,
C.
,
Nowinski
,
C. J.
,
Cantu
,
R. C.
,
Alvarez
,
V. E.
,
Hildebrandt
,
A. M.
,
Franz
,
E. S.
,
Konrad
,
J.
,
Hamilton
,
J. A.
,
Hua
,
N.
,
Tripodis
,
Y.
,
Anderson
,
A. T.
,
Howell
,
G. R.
,
Kaufer
,
D.
,
Hall
,
G. F.
,
Lu
,
K. P.
,
Ransohoff
,
R. M.
,
Cleveland
,
R. O.
,
Kowall
,
N. W.
,
Stein
,
T. D.
,
Lamb
,
B. T.
,
Huber
,
B. R.
,
Moss
,
W. C.
,
Friedman
,
A.
,
Stanton
,
P. K.
,
McKee
,
A. C.
, and
Goldstein
,
L. E.
,
2018
, “
Concussion, Microvascular Injury, and Early Tauopathy in Young Athletes After Impact Head Injury and an Impact Concussion Mouse Model
,”
Brain
,
141
(
2
), pp.
422
458
.10.1093/brain/awx350
31.
Grenke
,
B.
,
2002
, “
Digital Filtering for J211 Requirements Using a Fast Fourier Transform Based Filter
,”
SAE
Paper No. 2002-01-0796. 10.4271/2002-01-0796
32.
Hibbeler
,
R. C.
,
2012
,
Engineering Mechanics: Dynamics
, 13th ed.,
Pearson
,
Upper Saddle River, NJ
.
33.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
International Technical Conference on the Enhanced Safety of Vehicles National Highway Traffic Safety Administration
, Stuttgart, Germany, June 15–18, Paper No. 09-0407.https://trid.trb.org/view/1100058
34.
Gehre
,
C.
, and
Stahlschmidt
,
S.
,
2011
, “
Assessment of Dummy Models by Using Objective Rating Methods
,”
22nd International Technical Conference on the Enhanced Safety of Vehicles
, Washington, DC, June 13–16, Paper No. 11-0216.http://www-esv.nhtsa.dot.gov/Proceedings/22/isv7/main.htm
35.
Vavalle
,
N. A.
,
Jelen
,
B. C.
,
Moreno
,
D. P.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
An Evaluation of Objective Rating Methods for Full-Body Finite Element Model Comparison to PMHS Tests
,”
Traffic Inj. Prev.
,
14
(
Supp. 1
), pp.
S87
S94
.10.1080/15389588.2013.802777
36.
Siegmund
,
G. P.
,
Guskiewicz
,
K. M.
,
Marshall
,
S. W.
,
DeMarco
,
A. L.
, and
Bonin
,
S. J.
,
2016
, “
Laboratory Validation of Two Wearable Sensor Systems for Measuring Head Impact Severity in Football Players
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1257
1274
.10.1007/s10439-015-1420-6
37.
Schussler
,
E.
,
Stark
,
D.
,
Bolte
,
J. H.
,
Kang
,
Y. S.
, and
Onate
,
J. A.
,
2017
, “
Comparison of a Head Mounted Impact Measurement Device to the Hybrid III Anthropomorphic Testing Device in a Controlled Laboratory Setting
,”
Int. J. Sports Phys. Ther.
,
12
(
4
), pp.
592
600
.https://www.ncbi.nlm.nih.gov/pubmed/28900565
You do not currently have access to this content.