Abstract

Coronary artery atherosclerosis is a local, multifactorial, complex disease, and the leading cause of death in the US. Complex interactions between biochemical transport and biomechanical forces influence disease growth. Wall shear stress (WSS) affects coronary artery atherosclerosis by inducing endothelial cell mechanotransduction and by controlling the near-wall transport processes involved in atherosclerosis. Each of these processes is controlled by WSS differently and therefore has complicated the interpretation of WSS in atherosclerosis. In this paper, we present a comprehensive theory for WSS in atherosclerosis. First, a short review of shear stress-mediated mechanotransduction in atherosclerosis was presented. Next, subject-specific computational fluid dynamics (CFD) simulations were performed in ten coronary artery models of diseased and healthy subjects. Biochemical-specific mass transport models were developed to study low-density lipoprotein, nitric oxide, adenosine triphosphate, oxygen, monocyte chemoattractant protein-1, and monocyte transport. The transport results were compared with WSS vectors and WSS Lagrangian coherent structures (WSS LCS). High WSS magnitude protected against atherosclerosis by increasing the production or flux of atheroprotective biochemicals and decreasing the near-wall localization of atherogenic biochemicals. Low WSS magnitude promoted atherosclerosis by increasing atherogenic biochemical localization. Finally, the attracting WSS LCS's role was more complex where it promoted or prevented atherosclerosis based on different biochemicals. We present a summary of the different pathways by which WSS influences coronary artery atherosclerosis and compare different mechanotransduction and biotransport mechanisms.

References

1.
Lusis
,
A. J.
,
2012
, “
Genetics of Atherosclerosis
,”
Trends Genet.
,
28
(
6
), pp.
267
275
.10.1016/j.tig.2012.03.001
2.
Peng
,
Z.
,
Shu
,
B.
,
Zhang
,
Y.
, and
Wang
,
M.
,
2019
, “
Endothelial Response to Pathophysiological Stress
,”
Aeterioscler., Thromb., Vasc. Biol.
,
39
(
11
), pp.
e233
e243
.10.1161/ATVBAHA.119.312580
3.
Conway
,
D. E.
, and
Schwartz
,
M. A.
,
2013
, “
Flow-Dependent Cellular Mechanotransduction in Atherosclerosis
,”
J. Cell Sci.
,
126
(
22
), pp.
5101
5109
.10.1242/jcs.138313
4.
Pan
,
Y.
,
Zhou
,
F.
,
Song
,
Z.
,
Huang
,
H.
,
Chen
,
Y.
,
Shen
,
Y.
,
Jia
,
Y.
, and
Chen
,
J.
,
2018
, “
Oleanolic Acid Protects Against Pathogenesis of Atherosclerosis, Possibly Via FXR-Mediated Angiotensin (Ang)-(1–7) Upregulation
,”
Biomed. Pharmacother.
,
97
, pp.
1694
1700
.10.1016/j.biopha.2017.11.151
5.
Zha
,
S.
,
Wang
,
F.
,
Li
,
Z.
,
Ma
,
Z.
,
Yang
,
L.
, and
Liu
,
F.
,
2019
, “
PJ34, a PARP1 Inhibitor, Promotes Endothelial Repair in a Rabbit Model of High Fat Diet-Induced Atherosclerosis
,”
Cell Cycle
,
18
(
17
), pp.
2099
2109
.10.1080/15384101.2019.1640008
6.
Davies
,
P. F.
,
Barbee
,
K. A.
,
Volin
,
M. V.
,
Robotewskyj
,
A.
,
Chen
,
J.
,
Joseph
,
L.
,
Griem
,
M. L.
,
Wernick
,
M. N.
,
Jacobs
,
E.
,
Polacek
,
D. C.
,
DePaola
,
N.
, and
Barakat
,
A. I.
,
1997
, “
Spatial Relationships in Early Signaling Events of Flow-Mediated Endothelial Mechanotransduction
,”
Annu. Rev. Physiol.
,
59
(
1
), pp.
527
549
.10.1146/annurev.physiol.59.1.527
7.
Nakajima
,
K.
,
Nakano
,
T.
, and
Tanaka
,
A.
,
2006
, “
The Oxidative Modification Hypothesis of Atherosclerosis: The Comparison of Atherogenic Effects on Oxidized LDL and Remnant Lipoproteins in Plasma
,”
Clin. Chim. Acta
,
367
(
1–2
), pp.
36
47
.10.1016/j.cca.2005.12.013
8.
Baratchi
,
S.
,
Khoshmanesh
,
K.
,
Woodman
,
O. L.
,
Potocnik
,
S.
,
Peter
,
K.
, and
McIntyre
,
P.
,
2017
, “
Molecular Sensors of Blood Flow in Endothelial Cells
,”
Trends Mol. Med.
,
23
(
9
), pp.
850
868
.10.1016/j.molmed.2017.07.007
9.
Johnson
,
J. L.
, and
Newby
,
A. C.
,
2009
, “
Macrophage Heterogeneity in Atherosclerotic Plaques
,”
Curr. Opin. Lipidol.
,
20
(
5
), pp.
370
378
.10.1097/MOL.0b013e3283309848
10.
Cahill
,
P. A.
, and
Redmond
,
E. M.
,
2016
, “
Vascular Endothelium–Gatekeeper of Vessel Health
,”
Atherosclerosis
,
248
, pp.
97
109
.10.1016/j.atherosclerosis.2016.03.007
11.
Curry
,
F. E.
, and
Adamson
,
R. H.
,
2012
, “
Endothelial Glycocalyx: Permeability Barrier and Mechanosensor
,”
Ann. Biomed. Eng.
,
40
(
4
), pp.
828
839
.10.1007/s10439-011-0429-8
12.
Zhang
,
X.
,
Sun
,
D.
,
Song
,
J. W.
,
Zullo
,
J.
,
Lipphardt
,
M.
,
Coneh-Gould
,
L.
, and
Goligorsky
,
M. S.
,
2018
, “
Endothelial Cell Dysfunction and Glycocalyx—A Vicious Circle
,”
Matrix Biol.
,
71–72
, pp.
421
431
.10.1016/j.matbio.2018.01.026
13.
Alimohammadi
,
M.
,
Pichardo-Almarza
,
C.
,
Agu
,
O.
, and
Díaz-Zuccarini
,
V.
,
2017
, “
A Multiscale Modelling Approach to Understand Atherosclerosis Formation: A Patient-Specific Case Study in the Aortic Bifurcation
,”
Proc. Inst. Mech. Eng., Part H
,
231
(
5
), pp.
378
390
.10.1177/0954411917697356
14.
Cancel
,
L. M.
,
Fitting
,
A.
, and
Tarbell
,
J. M.
,
2007
, “
In Vitro Study of Ldl Transport Under Pressurized (Convective) Conditions
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
293
(
1
), pp.
H126
H132
.10.1152/ajpheart.01188.2006
15.
Olgac
,
U.
,
Poulikakos
,
D.
,
Saur
,
S. C.
,
Alkadhi
,
H.
, and
Kurtcuoglu
,
V.
,
2009
, “
Patient-Specific Three-Dimensional Simulation of Ldl Accumulation in a Human Left Coronary Artery in Its Healthy and Atherosclerotic States
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
296
(
6
), pp.
H1969
H1982
.10.1152/ajpheart.01182.2008
16.
Tarbell
,
J. M.
,
2010
, “
Shear Stress and the Endothelial Transport Barrier
,”
Cardiovasc. Res.
,
87
(
2
), pp.
320
330
.10.1093/cvr/cvq146
17.
Chen
,
J.
,
Ye
,
Z.
,
Wang
,
X.
,
Chang
,
J.
,
Yang
,
M.
,
Zhong
,
H.
,
Hong
,
F.
, and
Yang
,
S.
,
2018
, “
Nitric Oxide Bioavailability Dysfunction Involves in Atherosclerosis
,”
Biomed. Pharmacother.
,
97
, pp.
423
428
.10.1016/j.biopha.2017.10.122
18.
Liu
,
X.
,
Fan
,
Y.
,
Xu
,
X. Y.
, and
Deng
,
X.
,
2012
, “
Nitric Oxide Transport in an Axisymmetric Stenosis
,”
J. R. Soc. Interface
,
9
(
75
), pp.
2468
2478
.10.1098/rsif.2012.0224
19.
Plata
,
A. M.
,
Sherwin
,
S. J.
, and
Krams
,
R.
,
2010
, “
Endothelial Nitric Oxide Production and Transport in Flow Chambers: The Importance of Convection
,”
Ann. Biomed. Eng.
,
38
(
9
), pp.
2805
2816
.10.1007/s10439-010-0039-x
20.
Choi
,
H. W.
, and
Barakat
,
A. I.
,
2009
, “
Modulation of ATP/ADP Concentration at the Endothelial Cell Surface by Flow: Effect of Cell Topography
,”
Ann. Biomed. Eng.
,
37
(
12
), pp.
2459
2468
.10.1007/s10439-009-9793-z
21.
Qin
,
K. R.
,
Xiang
,
C.
,
Xu
,
Z.
,
Cao
,
L. L.
,
Ge
,
S. S.
, and
Jiang
,
Z. L.
,
2008
, “
Dynamic Modeling for Shear Stress Induced Atp Release From Vascular Endothelial Cells
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
345
353
.10.1007/s10237-007-0088-8
22.
Theodorou
,
K.
, and
Boon
,
R. A.
,
2018
, “
Endothelial Cell Metabolism in Atherosclerosis
,”
Front. Cell Dev. Biol.
,
6
, p.
82
10.3389/fcell.2018.00082
23.
Iori
,
F.
,
Grechy
,
L.
,
Corbett
,
R. W.
,
Gedroyc
,
W.
,
Duncan
,
N.
,
Caro
,
C. G.
, and
Vincent
,
P. E.
,
2015
, “
The Effect of in-Plane Arterial Curvature on Blood Flow and Oxygen Transport in Arterio-Venous Fistulae
,”
Phys. Fluids
,
27
(
3
), p.
031903
.10.1063/1.4913754
24.
Murphy
,
E. A.
,
Dunne
,
A. S.
,
Martin
,
D. M.
, and
Boyle
,
F. J.
,
2016
, “
Oxygen Mass Transport in Stented Coronary Arteries
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
508
522
.10.1007/s10439-015-1501-6
25.
Tarbell
,
J.
,
Mahmoud
,
M.
,
Corti
,
A.
,
Cardoso
,
L.
, and
Caro
,
C.
,
2020
, “
The Role of Oxygen Transport in Atherosclerosis and Vascular Disease
,”
J. R. Soc. Interface
,
17
(
165
), p.
20190732
.10.1098/rsif.2019.0732
26.
Cilla
,
M.
,
Pena
,
E.
, and
Martinez
,
M. A.
,
2014
, “
Mathematical Modelling of Atheroma Plaque Formation and Development in Coronary Arteries
,”
J. R. Soc. Interface
,
11
(
90
), p.
20130866
10.1098/rsif.2013.0866
27.
Hao
,
W.
,
Gong
,
S.
,
Wu
,
S.
,
Xu
,
J.
,
Go
,
M. R.
,
Friedman
,
A.
, and
Zhu
,
D.
,
2017
, “
A Mathematical Model of Aortic Aneurysm Formation
,”
PLoS One
,
12
(
2
), p.
e0170807
.10.1371/journal.pone.0170807
28.
Yao
,
P.
,
Zhao
,
H.
,
Mo
,
W.
, and
He
,
P.
,
2016
, “
Laminar Shear Stress Promotes Vascular Endothelial Cell Autophagy Through Upregulation With RAB4
,”
DNA Cell Biol.
,
35
(
3
), pp.
118
123
.10.1089/dna.2015.3041
29.
Chalmers
,
A. D.
,
Cohen
,
A.
,
Bursill
,
C. A.
, and
Myerscough
,
M. R.
,
2015
, “
Bifurcation and Dynamics in a Mathematical Model of Early Atherosclerosis
,”
J. Math. Biol.
,
71
(
6–7
), pp.
1451
1480
.10.1007/s00285-015-0864-5
30.
Leemasawatdigul
,
K.
, and
Gappa-Fahlenkamp
,
H.
,
2012
, “
Development of a Mathematical Model to Describe the Transport of Monocyte Chemoattractant Protein-1 Through a Three-Dimensional Collagen Matrix
,”
Cardiovasc. Pathol.
,
21
(
3
), pp.
219
228
.10.1016/j.carpath.2011.09.002
31.
Fazli
,
S.
,
Shirani
,
E.
, and
Sadeghi
,
M. R.
,
2011
, “
Numerical Simulation of LDL Mass Transfer in a Common Carotid Artery Under Pulsatile Flows
,”
J. Biomech.
,
44
(
1
), pp.
68
76
.10.1016/j.jbiomech.2010.08.025
32.
Díaz-Zuccarini
,
V.
,
Tomaso
,
G. D.
,
Agu
,
O.
, and
Pichardo-Almarza
,
C.
,
2014
, “
Towards Personalised Management of Atherosclerosis Via Computational Models in Vascular Clinics: Technology Based on Patient-Specific Simulation Approach
,”
Healthcare Technol. Lett.
,
1
(
1
), pp.
13
18
.10.1049/htl.2013.0040
33.
Kim
,
S.
, and
Giddens
,
D. P.
,
2015
, “
Mass Transport of Low Density Lipoprotein in Reconstructed Hemodynamic Environments of Human Carotid Arteries: The Role of Volume and Solute Flux Through the Endothelium
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
041007
.10.1115/1.4028969
34.
Alimohammadi
,
M.
,
Pichardo-Almarza
,
C.
,
Agu
,
O.
, and
Díaz-Zuccarini
,
V.
,
2016
, “
Development of a Patient-Specific Multi-Scale Model to Understand Atherosclerosis and Calcification Locations: Comparison With In Vivo Data in an Aortic Dissection
,”
Front. Physiol.
,
7
, p.
238
.10.3389/fphys.2016.00238
35.
Lopez-Quintero
,
S. V.
,
Ji
,
X.
,
Antonetti
,
D. A.
, and
Tarbell
,
J. M.
,
2011
, “
A Three-Pore Model Describes Transport Properties of Bovine Retinal Endothelial Cells in Normal and Elevated Glucose
,”
Invest. Ophthalmol. Visual Sci.
,
52
(
2
), pp.
1171
1180
.10.1167/iovs.10-5971
36.
Hardman
,
D.
,
Doyle
,
B. J.
,
Semple
,
S. I. K.
,
Richards
,
J. M. J.
,
Newby
,
D. E.
,
Easson
,
W. J.
, and
Hoskins
,
P. R.
,
2013
, “
On the Prediction of Monocyte Deposition in Abdominal Aortic Aneurysms Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
227
(
10
), pp.
1114
1124
.10.1177/0954411913494319
37.
Rath
,
G.
,
Dessy
,
C.
, and
Feron
,
O.
,
2009
, “
Caveolae, Caveolin and Control of Vascular Tone: Nitric Oxide (NO) and Endothelium Derived Hyperpolarizing Factor (EDHF) Regulation
,”
J. Physiol. Pharmacol.
,
60
(
Suppl 4
), pp.
105
109
. http://agro.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-e72f491b-7fe9-4b91-a217-1c00faa5d0d7
38.
Buckley
,
B. J.
,
Marshall
,
Z. M.
, and
Whorton
,
A. R.
,
2003
, “
Nitric Oxide Stimulates Nrf2 Nuclear Translocation in Vascular Endothelium
,”
Biochem. Biophys. Res. Commun.
,
307
(
4
), pp.
973
979
.10.1016/S0006-291X(03)01308-1
39.
Goyal
,
T.
,
Mitra
,
S.
,
Khaidakov
,
M.
,
Wang
,
X.
,
Singla
,
S.
,
Ding
,
Z.
,
Liu
,
S.
, and
Mehta
,
J. L.
,
2012
, “
Current Concepts of the Role of Oxidized LDL Receptors in Atherosclerosis
,”
Curr. Atheroscler. Rep.
,
14
(
2
), pp.
150
159
.10.1007/s11883-012-0228-1
40.
Andrews
,
A. M.
,
Jaron
,
D.
,
Buerk
,
D. G.
,
Kirby
,
P. L.
, and
Barbee
,
K. A.
,
2010
, “
Direct, Real-Time Measurement of Shear Stress-Induced Nitric Oxide Produced From Endothelial Cells In Vitro
,”
Nitric Oxide
,
23
(
4
), pp.
335
342
.10.1016/j.niox.2010.08.003
41.
Ghimire
,
K.
,
Zaric
,
J.
,
Alday-Parejo
,
B.
,
Seebach
,
J.
,
Bousquenaud
,
M.
,
Stalin
,
J.
,
Bieler
,
G.
,
Schnittler
,
H.
, and
Rüegg
,
C.
,
2019
, “
Magi1 Mediates ENOS Activation and No Production in Endothelial Cells in Response to Fluid Shear Stress
,”
Cells
,
8
(
5
), p.
388
.10.3390/cells8050388
42.
Kolluru
,
G. K.
,
Sinha
,
S.
,
Majumder
,
S.
,
Muley
,
A.
,
Siamwala
,
J. H.
,
Gupta
,
R.
, and
Chatterjee
,
S.
,
2010
, “
Shear Stress Promotes Nitric Oxide Production in Endothelial Cells by Sub-Cellular Delocalization of ENOS: A Basis for Shear Stress Mediated Angiogenesis
,”
Nitric Oxide
,
22
(
4
), pp.
304
315
.10.1016/j.niox.2010.02.004
43.
Farghadan
,
A.
, and
Arzani
,
A.
,
2019
, “
The Combined Effect of Wall Shear Stress Topology and Magnitude on Cardiovascular Mass Transport
,”
Int. J. Heat Mass Transfer
,
131
, pp.
252
260
.10.1016/j.ijheatmasstransfer.2018.11.051
44.
Zumerle
,
S.
,
Calì
,
B.
,
Munari
,
F.
,
Angioni
,
R.
,
Virgilio
,
F. D.
,
Molon
,
B.
, and
Viola
,
A.
,
2019
, “
Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis
,”
Cell Rep.
,
27
(
1
), pp.
1
10
.10.1016/j.celrep.2019.03.011
45.
Wang
,
S.
,
Chennupati
,
R.
,
Kaur
,
H.
,
Iring
,
A.
,
Wettschureck
,
N.
, and
Offermanns
,
S.
,
2016
, “
Endothelial Cation Channel PIEZO1 Controls Blood Pressure by Mediating Flow-Induced ATP Release
,”
J. Clin. Invest.
,
126
(
12
), pp.
4527
4536
.10.1172/JCI87343
46.
Brown
,
A. J.
,
Teng
,
Z.
,
Evans
,
P. C.
,
Gillard
,
J. H.
,
Samady
,
H.
, and
Bennett
,
M. R.
,
2016
, “
Role of Biomechanical Forces in the Natural History of Coronary Atherosclerosis
,”
Nat. Rev. Cardiol.
,
13
(
4
), pp.
210
220
.10.1038/nrcardio.2015.203
47.
Arzani
,
A.
,
Gambaruto
,
A. M.
,
Chen
,
G.
, and
Shadden
,
S. C.
,
2017
, “
Wall Shear Stress Exposure Time: A Lagrangian Measure of Near-Wall Stagnation and Concentration in Cardiovascular Flows
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
787
803
.10.1007/s10237-016-0853-7
48.
Baeyens
,
N.
, and
Schwartz
,
M. A.
,
2016
, “
Biomechanics of Vascular Mechanosensation and Remodeling
,”
Mol. Biol. Cell
,
27
(
1
), pp.
7
11
.10.1091/mbc.E14-11-1522
49.
Mofrad
,
M. R. K.
, and
Kamm
,
R. D.
,
2009
,
Cellular Mechanotransduction: Diverse Perspectives From Molecules to Tissues
,
Cambridge University Press
,
Cambridge, UK
.
50.
R. Levick
,
J.
,
2013
,
An Introduction to Cardiovascular Physiology
,
Butterworth-Heinemann
,
London, UK
.
51.
Zhou
,
J.
,
Li
,
Y.
, and
Chien
,
S.
,
2014
, “
Shear Stress–Initiated Signaling and Its Regulation of Endothelial Function
,”
Aeterioscler., Thromb., Vasc. Biol.
,
34
(
10
), pp.
2191
2198
.10.1161/ATVBAHA.114.303422
52.
Coon
,
B. G.
,
Baeyens
,
N.
,
Han
,
J.
,
Budatha
,
M.
,
Ross
,
T. D.
,
Fang
,
J. S.
,
Yun
,
S.
,
Thomas
,
J.
, and
Schwartz
,
M. A.
,
2015
, “
Intramembrane Binding of VE-Cadherin to VEGFR2 and VEGFR3 Assembles the Endothelial Mechanosensory Complex
,”
J. Cell Biol.
,
208
(
7
), pp.
975
986
.10.1083/jcb.201408103
53.
Tzima
,
E.
,
Irani-Tehrani
,
M.
,
Kiosses
,
W. B.
,
Dejana
,
E.
,
Schultz
,
D. A.
,
Engelhardt
,
B.
,
Cao
,
G.
,
DeLisser
,
H.
, and
Schwartz
,
M. A.
,
2005
, “
A Mechanosensory Complex That Mediates the Endothelial Cell Response to Fluid Shear Stress
,”
Nature
,
437
(
7057
), pp.
426
431
.10.1038/nature03952
54.
Hierck
,
B. P.
,
Van der Heiden
,
K.
,
Alkemade
,
F. E.
,
Van de Pas
,
S.
,
Van Thienen
,
J. V.
,
Groenendijk
,
B. C. W.
,
Bax
,
W. H.
,
Van der Laarse
,
A.
,
DeRuiter
,
M. C.
,
Horrevoets
,
A. J. G.
, and
Poelmann
,
R. E.
,
2008
, “
Primary Cilia Sensitize Endothelial Cells for Fluid Shear Stress
,”
Dev. Dyn.
,
237
(
3
), pp.
725
735
.10.1002/dvdy.21472
55.
Pahakis
,
M. Y.
,
Kosky
,
J. R.
,
Dull
,
R. O.
, and
Tarbell
,
J. M.
,
2007
, “
The Role of Endothelial Glycocalyx Components in Mechanotransduction of Fluid Shear Stress
,”
Biochem. Biophys. Res. Commun.
,
355
(
1
), pp.
228
233
.10.1016/j.bbrc.2007.01.137
56.
Cheng
,
C.
,
van Haperen
,
R.
,
de Waard
,
M.
,
van Damme
,
L. C. A.
,
Tempel
,
D.
,
Hanemaaijer
,
L.
,
van Cappellen
,
G. W. A.
,
Bos
,
J.
,
Slager
,
C. J.
,
Duncker
,
D. J.
,
van der Steen
,
A. F. W.
,
de Crom
,
R.
, and
Krams
,
R.
,.
2005
, “
Shear Stress Affects the Intracellular Distribution of ENOS: Direct Demonstration by a Novel In Vivo Technique
,”
Blood
,
106
(
12
), pp.
3691
3698
.10.1182/blood-2005-06-2326
57.
Kliche
,
K.
,
Jeggle
,
P.
,
Pavenstädt
,
H.
, and
Oberleithner
,
H.
,
2011
, “
Role of Cellular Mechanics in the Function and Life Span of Vascular Endothelium
,”
Pflügers Archiv-Eur. J. Physiol.
,
462
(
2
), pp.
209
217
.10.1007/s00424-011-0929-2
58.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
59.
Alaiti
,
M. A.
,
Orasanu
,
G.
,
Tugal
,
D.
,
Lu
,
Y.
, and
Jain
,
M. K.
,
2012
, “
Kruppel-Like Factors and Vascular Inflammation: Implications for Atherosclerosis
,”
Curr. Atheroscler. Rep.
,
14
(
5
), pp.
438
449
.10.1007/s11883-012-0268-6
60.
Li
,
Z.
,
Martin
,
M.
,
Zhang
,
J.
,
Huang
,
H.-Y.
,
Bai
,
L.
,
Zhang
,
J.
,
Kang
,
J.
,
He
,
M.
,
Li
,
J.
,
Maurya
,
M. R.
,
Gupta
,
S.
,
Zhou
,
G.
,
Sangwung
,
P.
,
Xu
,
Y.-J.
,
Lei
,
T.
,
Huang
,
H.-D.
,
Jain
,
M.
,
Jain
,
M. K.
,
Subramaniam
,
S.
, and
Shyy
,
J. Y.-J.
,
2017
, “
KLF4 Regulation of Ch25 h and LXR Mitigates Atherosclerosis Susceptibility
,”
Circulation
,
136
(
14
), pp.
1315
1330
.10.1161/CIRCULATIONAHA.117.027462
61.
Baeyens
,
N.
,
Bandyopadhyay
,
C.
,
Coon
,
B. G.
,
Yun
,
S.
, and
Schwartz
,
M. A.
,
2016
, “
Endothelial Fluid Shear Stress Sensing in Vascular Health and Disease
,”
J. Clin. Invest.
,
126
(
3
), pp.
821
828
.10.1172/JCI83083
62.
Xiao
,
H.
,
Lu
,
M.
,
Lin
,
T. Y.
,
Chen
,
Z.
,
Chen
,
G.
,
Wang
,
W.-C.
,
Marin
,
T.
,
Shentu
,
T.-P.
,
Wen
,
L.
,
Gongol
,
B.
,
Sun
,
W.
,
Liang
,
X.
,
Chen
,
J.
,
Huang
,
H.-D.
,
Pedra
,
J. H. F.
,
Johnson
,
D. A.
, and
Shyy
,
J. Y.-J.
,
2013
, “
Sterol Regulatory Element Binding Protein 2 Activation of NLRP3 Inflammasome in Endothelium Mediates Hemodynamic-Induced Atherosclerosis Susceptibility
,”
Circulation
,
128
(
6
), pp.
632
642
.10.1161/CIRCULATIONAHA.113.002714
63.
Dabagh
,
M.
,
Jalali
,
P.
,
Butler
,
P. J.
,
Randles
,
A.
, and
Tarbell
,
J. M.
,
2017
, “
Mechanotransmission in Endothelial Cells Subjected to Oscillatory and Multi-Directional Shear Flow
,”
J. R. Soc. Interface
,
14
(
130
), p.
20170185
.10.1098/rsif.2017.0185
64.
Feng
,
S.
,
Bowden
,
N.
,
Fragiadaki
,
M.
,
Souilhol
,
C.
,
Hsiao
,
S.
,
Mahmoud
,
M.
,
Allen
,
S.
,
Pirri
,
D.
,
Ayllon
,
B. T.
,
Akhtar
,
S.
,
Thompson
,
A. A. R.
,
Jo
,
H.
,
Weber
,
C.
,
Ridger
,
V.
,
Schober
,
A.
, and
Evans
,
P. C.
,
2017
, “
Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites
,”
Aeterioscler., Thromb., Vasc. Biol.
,
37
(
11
), pp.
2087
2101
.10.1161/ATVBAHA.117.309249
65.
Sriram
,
K.
,
Laughlin
,
J. G.
,
Rangamani
,
P.
, and
Tartakovsky
,
D. M.
,
2016
, “
Shear-Induced Nitric Oxide Production by Endothelial Cells
,”
Biophys. J.
,
111
(
1
), pp.
208
221
.10.1016/j.bpj.2016.05.034
66.
Tran
,
J.
,
Magenau
,
A.
,
Rodriguez
,
M.
,
Rentero
,
C.
,
Royo
,
T.
,
Enrich
,
C.
,
Thomas
,
S. R.
,
Grewal
,
T.
, and
Gaus
,
K.
,
2016
, “
Activation of Endothelial Nitric Oxide (ENOS) Occurs Through Different Membrane Domains in Endothelial Cells
,”
PLoS One
,
11
(
3
), p.
e0151556
10.1371/journal.pone.0151556
67.
Shyy
,
J. Y.-J.
, and
Chien
,
S.
,
2002
, “
Role of Integrins in Endothelial Mechanosensing of Shear Stress
,”
Circ. Res.
,
91
(
9
), pp.
769
775
.10.1161/01.RES.0000038487.19924.18
68.
Siragusa
,
M.
, and
Fleming
,
I.
,
2016
, “
The ENOS Signalosome and Its Link to Endothelial Dysfunction
,”
Pflügers Archiv-Eur. J. Physiol.
,
468
(
7
), pp.
1125
1137
.10.1007/s00424-016-1839-0
69.
Laurent
,
T. C.
, and
Fraser
,
J. R.
,
1992
, “
Hyaluronan
,”
FASEB J.
,
6
(
7
), pp.
2397
2404
.10.1096/fasebj.6.7.1563592
70.
H. Lipowsky
,
H.
,
2018
, “
Role of the Glycocalyx as a Barrier to Leukocyte-Endothelium Adhesion
,”
Molecular, Cellular, and Tissue Engineering of the Vascular System
,
Springer
,
Berlin
, pp.
51
68
.
71.
Colombelli
,
J.
,
Besser
,
A.
,
Kress
,
H.
,
Reynaud
,
E. G.
,
Girard
,
P.
,
Caussinus
,
E.
,
Haselmann
,
U.
,
Small
,
J. V.
,
Schwarz
,
U. S.
, and
Stelzer
,
E. H. K.
,
2009
, “
Mechanosensing in Actin Stress Fibers Revealed by a Close Correlation Between Force and Protein Localization
,”
J. Cell Sci.
,
122
(
10
), pp.
1665
1679
.10.1242/jcs.042986
72.
Yoshigi
,
M.
,
Hoffman
,
L. M.
,
Jensen
,
C. C.
,
Yost
,
H. J.
, and
Beckerle
,
M. C.
,
2005
, “
Mechanical Force Mobilizes Zyxin From Focal Adhesions to Actin Filaments and Regulates Cytoskeletal Reinforcement
,”
J. Cell Biol.
,
171
(
2
), pp.
209
215
.10.1083/jcb.200505018
73.
Wojciak-Stothard
,
B.
, and
Ridley
,
A. J.
,
2003
, “
Shear Stress–Induced Endothelial Cell Polarization is Mediated by Rho and Rac but Not Cdc42 or PI 3-Kinases
,”
J. Cell Biol.
,
161
(
2
), pp.
429
439
.10.1083/jcb.200210135
74.
Chien
,
S.
,
2007
, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
292
(
3
), pp.
H1209
H1224
.10.1152/ajpheart.01047.2006
75.
Li
,
S.
,
Kim
,
M.
,
Hu
,
Y.
,
Jalali
,
S.
,
Schlaepfer
,
D. D.
,
Hunter
,
T.
,
Chien
,
S.
, and
Shyy
,
J. Y. J.
,
1997
, “
Fluid Shear Stress Activation of Focal Adhesion Kinase Linking to Mitogen-Activated Protein Kinases
,”
J. Biol. Chem.
,
272
(
48
), pp.
30455
30462
.10.1074/jbc.272.48.30455
76.
Lehoux
,
S.
,
2020
, “
Molecular Mechanisms of the Vascular Responses to Hemodynamic Forces
,”
Biomechanics of Coronary Atherosclerotic Plaque
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
51
88
.10.1111/j.1365-2796.2006.01624.x
77.
Gerhold
,
K. A.
, and
Schwartz
,
M. A.
,
2016
, “
Ion Channels in Endothelial Responses to Fluid Shear Stress
,”
Physiology
,
31
(
5
), pp.
359
369
.10.1152/physiol.00007.2016
78.
Shaikh
,
K.
,
Kinninger
,
A.
,
Cherukuri
,
L.
,
Birudaraju
,
D.
,
Nakanishi
,
R.
,
Almeida
,
S.
,
Jayawardena
,
E.
,
Shekar
,
C.
,
Flores
,
F.
,
Hamal
,
S.
,
Sheikh
,
M. S.
,
Johanis
,
A.
,
Cu
,
B.
, and
Budoff
,
M. J.
,
2020
, “
Aged Garlic Extract Reduces Low Attenuation Plaque in Coronary Arteries of Patients With Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study
,”
Exp. Ther. Med.
,
19
(
2
), pp.
1457
1461
.10.3892/etm.2019.8371
79.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
Simvascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
80.
Petranovic
,
M.
,
Soni
,
A.
,
Bezzera
,
H.
,
Loureiro
,
R.
,
Sarwar
,
A.
,
Raffel
,
C.
,
Pomerantsev
,
E.
,
Jang
,
I.-K.
,
Brady
,
T. J.
,
Achenbach
,
S.
, and
Cury
,
R. C.
,
2009
, “
Assessment of Nonstenotic Coronary Lesions by 64-Slice Multidetector Computed Tomography in Comparison to Intravascular Ultrasound: Evaluation of Nonculprit Coronary Lesions
,”
J. Cardiovasc. Comput. Tomogr.
,
3
(
1
), pp.
24
31
.10.1016/j.jcct.2008.12.005
81.
De Nisco
,
G.
,
Kok
,
A. M.
,
Chiastra
,
C.
,
Gallo
,
D.
,
Hoogendoorn
,
A.
,
Migliavacca
,
F.
,
Wentzel
,
J. J.
, and
Morbiducci
,
U.
,
2019
, “
The Atheroprotective Nature of Helical Flow in Coronary Arteries
,”
Ann. Biomed. Eng.
,
47
(
2
), pp.
425
438
.10.1007/s10439-018-02169-x
82.
Hoogendoorn
,
A.
,
Kok
,
A. M.
,
Hartman
,
E. M. J.
,
de Nisco
,
G.
,
Casadonte
,
L.
,
Chiastra
,
C.
,
Coenen
,
A.
,
Korteland
,
S.-A.
,
Van der Heiden
,
K.
,
Gijsen
,
F. J. H.
,
Duncker
,
D. J.
,
van der Steen
,
A. F. W.
, and
Wentzel
,
J. J.
,.
2020
, “
Multidirectional Wall Shear Stress Promotes Advanced Coronary Plaque Development: Comparing Five Shear Stress Metrics
,”
Cardiovasc. Res.
,
116
(
6
), pp.
1136
1146
.10.1093/cvr/cvz212
83.
Hansen
,
K. B.
,
Arzani
,
A.
, and
Shadden
,
S. C.
,
2019
, “
Finite Element Modeling of Near-Wall Mass Transport in Cardiovascular Flows
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
1
), p.
e3148
.10.1002/cnm.3148
84.
Tada
,
S.
,
2010
, “
Numerical Study of Oxygen Transport in a Carotid Bifurcation
,”
Phys. Med. Biol.
,
55
(
14
), pp.
3993
4010
.10.1088/0031-9155/55/14/004
85.
Mortensen
,
M.
, and
Valen-Sendstad
,
K.
,
2015
, “
Oasis: A High-Level/High-Performance Open Source Navier–Stokes Solver
,”
Comput. Phys. Commun.
,
188
, pp.
177
188
.10.1016/j.cpc.2014.10.026
86.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.10.1007/s10439-010-0083-6
87.
Huo
,
Y.
, and
Kassab
,
G. S.
,
2012
, “
Intraspecific Scaling Laws of Vascular Trees
,”
J. R. Soc. Interface
,
9
(
66
), pp.
190
200
.10.1098/rsif.2011.0270
88.
Arzani
,
A.
,
2018
, “
Accounting for Residence-Time in Blood Rheology Models: Do We Really Need Non-Newtonian Blood Flow Modelling in Large Arteries?
,”
J. R. Soc. Interface
,
15
(
146
), p.
20180486
10.1098/rsif.2018.0486
89.
Eslami
,
P.
,
Tran
,
J.
,
Jin
,
Z.
,
Karady
,
J.
,
Sotoodeh
,
R.
,
Lu
,
M. T.
,
Hoffmann
,
U.
, and
Marsden
,
A.
,
2020
, “
Effect of Wall Elasticity on Hemodynamics and Wall Shear Stress in Patient-Specific Simulations in the Coronary Arteries
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
024503
.10.1115/1.4043722
90.
Arzani
,
A.
,
Gambaruto
,
A. M.
,
Chen
,
G.
, and
Shadden
,
S. C.
,
2016
, “
Lagrangian Wall Shear Stress Structures and Near-Wall Transport in High-Schmidt-Number Aneurysmal Flows
,”
J. Fluid Mech.
,
790
, pp.
158
172
.10.1017/jfm.2016.6
91.
Mazzi
,
V.
,
Gallo
,
D.
,
Calò
,
K.
,
Najafi
,
M.
,
Khan
,
M. O.
,
De Nisco
,
G.
,
Steinman
,
D. A.
, and
Morbiducci
,
U.
,
2020
, “
A Eulerian Method to Analyze Wall Shear Stress Fixed Points and Manifolds in Cardiovascular Flows
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1403
1421
.10.1007/s10237-019-01278-3
92.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2018
, “
Wall Shear Stress Fixed Points in Cardiovascular Fluid Mechanics
,”
J. Biomech.
,
73
, pp.
145
152
.10.1016/j.jbiomech.2018.03.034
93.
Choi
,
H. W.
,
Ferrara
,
K. W.
, and
Barakat
,
A. I.
,
2007
, “
Modulation of ATP/ADP Concentration at the Endothelial Surface by Shear Stress: Effect of Flow Recirculation
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
505
516
.10.1007/s10439-006-9247-9
94.
David
,
T.
,
2003
, “
Wall Shear Stress Modulation of ATP/ADP Concentration at the Endothelium
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1231
1237
.10.1114/1.1615574
95.
John
,
K.
, and
Barakat
,
A. I.
,
2001
, “
Modulation of ATP/ADP Concentration at the Endothelial Surface by Shear Stress: Effect of Flow-Induced ATP Release
,”
Ann. Biomed. Eng.
,
29
(
9
), pp.
740
751
.10.1114/1.1397792
96.
Grechy
,
L.
,
Iori
,
F.
,
Corbett
,
R. W.
,
Gedroyc
,
W.
,
Duncan
,
N.
,
Caro
,
C. G.
, and
Vincent
,
P. E.
,
2017
, “
The Effect of Arterial Curvature on Blood Flow in Arterio-Venous Fistulae: Realistic Geometries and Pulsatile Flow
,”
Cardiovasc. Eng. Technol.
,
8
(
3
), pp.
313
329
.10.1007/s13239-017-0321-2
97.
Parodi
,
O.
,
Exarchos
,
T. P.
,
Marraccini
,
P.
,
Vozzi
,
F.
,
Milosevic
,
Z.
,
Nikolic
,
D.
,
Sakellarios
,
A.
,
Siogkas
,
P. K.
,
Fotiadis
,
D. I.
, and
Filipovic
,
N.
,
2012
, “
Patient-Specific Prediction of Coronary Plaque Growth From CTA Angiography: A Multiscale Model for Plaque Formation and Progression
,”
IEEE Trans. Inf. Technol. Biomed.
,
16
(
5
), pp.
952
965
.10.1109/TITB.2012.2201732
98.
Olgac
,
U.
,
Kurtcuoglu
,
V.
, and
Poulikakos
,
D.
,
2008
, “
Computational Modeling of Coupled Blood-Wall Mass Transport of LDL: Effects of Local Wall Shear Stress
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
294
(
2
), pp.
H909
H919
. 10.1152/ajpheart.01082.2007
99.
Yu
,
H.
,
Zeng
,
Y.
,
Hu
,
J.
, and
Li
,
C.
,
2002
, “
Fluid Shear Stress Induces the Secretion of Monocyte Chemoattractant Protein-1 in Cultured Human Umbilical Vein Endothelial Cells
,”
Clin. Hemorheol. Microcirc.
,
26
(
3
), pp.
199
207
. https://content.iospress.com/articles/clinical-hemorheology-and-microcirculation/ch490
100.
De Nisco
,
G.
,
Zhang
,
P.
,
Calò
,
K.
,
Liu
,
X.
,
Ponzini
,
R.
,
Bignardi
,
C.
,
Rizzo
,
G.
,
Deng
,
X.
,
Gallo
,
D.
, and
Morbiducci
,
U.
,
2018
, “
What is Needed to Make Low-Density Lipoprotein Transport in Human Aorta Computational Models Suitable to Explore Links to Atherosclerosis? Impact of Initial and Inflow Boundary Conditions
,”
J. Biomech.
,
68
, pp.
33
42
.10.1016/j.jbiomech.2017.12.009
101.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-Alpha Method for Integrating the Filtered Navier-Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.10.1016/S0045-7825(00)00203-6
102.
Michel
,
C. C.
, and
Curry
,
F. E.
,
1999
, “
Microvascular Permeability
,”
Physiol. Rev.
,
79
(
3
), pp.
703
761
.10.1152/physrev.1999.79.3.703
103.
Förstermann
,
U.
,
Xia
,
N.
, and
Li
,
H.
,
2017
, “
Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis
,”
Circulation Res.
,
120
(
4
), pp.
713
735
.10.1161/CIRCRESAHA.116.309326
104.
Loscalzo
,
J.
, and
Vita
,
J. A.
,
2000
,
Nitric Oxide and the Cardiovascular System
,
Springer Science & Business Media
,
Berlin
.
105.
Nollert
,
M. U.
, and
McIntire
,
L. V.
,
1992
, “
Convective Mass Transfer Effects on the Intracellular Calcium Response of Endothelial Cells
,”
ASME J. Biomech. Eng.
,
114
(
3
), pp.
321
326
.10.1115/1.2891390
106.
Cilla
,
M.
,
Martínez
,
M. A.
, and
Peña
,
E.
,
2015
, “
Effect of Transmural Transport Properties on Atheroma Plaque Formation and Development
,”
Ann. Biomed. Eng.
,
43
(
7
), pp.
1516
1530
.10.1007/s10439-015-1299-2
107.
Vincent
,
P. E.
, and
Weinberg
,
P. D.
,
2014
, “
Flow-Dependent Concentration Polarization and the Endothelial Glycocalyx Layer: Multi-Scale Aspects of Arterial Mass Transport and Their Implications for Atherosclerosis
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
313
326
.10.1007/s10237-013-0512-1
108.
Timmins
,
L. H.
,
Molony
,
D. S.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Oshinski
,
J. N.
,
Giddens
,
D. P.
, and
Samady
,
H.
,
2017
, “
Oscillatory Wall Shear Stress is a Dominant Flow Characteristic Affecting Lesion Progression Patterns and Plaque Vulnerability in Patients With Coronary Artery Disease
,”
J. R. Soc. Interface
,
14
(
127
), p.
20160972
10.1098/rsif.2016.0972
109.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
(
2
), pp.
242
250
. page10.1093/cvr/cvt044
110.
Smedby
,
O.
,
1997
, “
Do Plaques Grow Upstream or Downstream? an Angiographic Study in the Femoral Artery
,”
Aeterioscler., Thromb., Vasc. Biol.
,
17
(
5
), pp.
912
918
.10.1161/01.ATV.17.5.912
111.
Stone
,
P. H.
,
Saito
,
S.
,
Takahashi
,
S.
,
Makita
,
Y.
,
Nakamura
,
S.
,
Kawasaki
,
T.
,
Takahashi
,
A.
,
Katsuki
,
T.
,
Nakamura
,
S.
,
Namiki
,
A.
,
Hirohata
,
A.
,
Matsumura
,
T.
,
Yamazaki
,
S.
,
Yokoi
,
H.
,
Tanaka
,
S.
,
Otsuji
,
S.
,
Yoshimachi
,
F.
,
Honye
,
J.
,
Harwood
,
D.
,
Reitman
,
M.
,
Coskun
,
A. U.
,
Papafaklis
,
M. I.
, and
Feldman
,
C. L.
,
2012
, “
Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Plaque Characteristics: The Prediction Study
,”
Circulation
,
126
(
2
), pp.
172
181
.10.1161/CIRCULATIONAHA.112.096438
112.
Stefanadis
,
C.
,
Antoniou
,
C. K.
,
Tsiachris
,
D.
, and
Pietri
,
P.
,
2017
, “
Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives
,”
J. Am. Heart Assoc.
,
6
(
3
), p.
e005543
.10.1161/JAHA.117.005543
You do not currently have access to this content.