Abstract

This study described the regional distribution of layer-specific residual deformations in fifteen human aortas collected during autopsy. Circumferentially and axially cut strips of standardized dimensions from the anterior quadrant of nine consecutive aortic levels were photographed to obtain the zero-stress state for the intact wall. The strips were then dissected into layers that were also photographed to obtain their zero-stress state. Changes in layer-specific opening angle, residual stretches, and thickness at each aortic level and direction were determined via image analysis. The circumferential and axial opening angles of the intima were ∼240 deg and ∼30 deg, respectively, throughout the aorta; those of the adventitia were ∼150 deg and –20 deg to 70 deg. The opening angles of the intact wall and media were similar in either direction. The circumferential residual stretches of the intima and the axial residual stretches of the media showed high values in the aortic arch, decreasing in the descending thoracic aorta and increasing toward the iliac artery bifurcation, while the axial residual stretches of the adventitia increased distally. The remaining residual stretches did not vary significantly with aortic level, suggesting an intimal role in determining circumferential, as well as medial and adventitial roles in determining axial residual stretches. We conclude that the tensile residual stretches released in the intima and media upon separation, and the compressive residual stretches released in the adventitia may moderate the inverse transmural stress gradients under physiologic loads, resulting from the >180 deg circumferential opening angle of the intact wall.

References

1.
Boudoulas
,
H.
, and
Wooley
,
C. F.
,
1996
, “
Aortic Function
,”
Functional Abnormalities of the Aorta
,
H.
Boudoulas
,
P. K.
Toutouzas
,
C. F.
Wooley
, eds.,
Futura Publishing
,
New York
, pp.
3
36
.
2.
Nichols
,
W. W.
,
O'Rourke
,
M. F.
, and
Vlachopoulos
,
C.
,
2011
,
McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles
, 6th ed.,
Hodder Arnold
,
London, UK
.
3.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
, 1st ed.,
Springer-Verlag
,
New York
.
4.
Rachev
,
A.
, and
Greenwald
,
S.
,
2003
, “
Residual Strains in Conduit Arteries
,”
J. Biomech.
,
36
(
5
), pp.
661
670
.10.1016/S0021-9290(02)00444-X
5.
Sokolis
,
D. P.
,
2015
, “
Effects of Aneurysm on the Directional, Regional, and Layer Distribution of Residual Strains in Ascending Thoracic Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
229
243
.10.1016/j.jmbbm.2015.01.024
6.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Species Dependence of the Zero-Stress State of Aorta: Pig Versus Rat
,”
ASME J. Biomech. Eng.
,
113
(
4)
, pp.
446
451
.10.1115/1.2895425
7.
Sokolis
,
D. P.
,
Savva
,
G. D.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2017
, “
Regional Distribution of Circumferential Residual Strains in the Human Aorta According to Age and Gender
,”
J. Mech. Behav. Biomed. Mater.
,
67
, pp.
87
100
.10.1016/j.jmbbm.2016.12.003
8.
Vossoughi
,
J.
,
1992
, “
Longitudinal Residual Strain in Arteries
,”
Proc. 11th Southern Biomedical Engineering Conference
,
Memphis
,
TN
, pp.
17
19
.
9.
Vossoughi
,
J.
,
Hedjazi
,
H.
, and
Borris
,
F. S.
,
1993
, “
Intimal Residual Stress and Strain in Large Arteries
,”
Proceedings of the Summer Bioengineering Conference
,
N. A.
Langrana
,
M. H.
Friedman
,
E. S.
Groods
, eds.,
ASME
,
New York
, pp.
434
437
.
10.
Greenwald
,
S. E.
,
Moore
,
J. E.
Jr.
,
Rachev
,
A.
,
Kane
,
T. C.
, and
Meister
,
J. J.
,
1997
, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
438
444
.10.1115/1.2798291
11.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Auer
,
M.
,
Regitnig
,
P.
,
Ogden
,
R. W.
,
2007
, “
Layer-Specific 3D Deformations of Human Aortas With Non-Atherosclerotic Intimal Thickening
,”
Ann. Biomed. Eng.
,
35
(
4
) pp.
530
545
.10.1007/s10439-006-9252-z
12.
Peña
,
J. A.
,
Martínez
,
M. A.
, and
Peña
,
E.
,
2015
, “
Layer-Specific Residual Deformations and Uniaxial and Biaxial Mechanical Properties of Thoracic Porcine Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
55
69
.10.1016/j.jmbbm.2015.05.024
13.
Amabili
,
M.
,
Balasubramanian
,
P.
,
Bozzo
,
I.
,
Breslavsky
,
I. D.
, and
Ferrari
,
G.
,
2019
, “
Layer-Specific Hyperelastic and Viscoelastic Characterization of Human Descending Thoracic Aortas
,”
J. Mech. Behav. Biomed. Mater.
,
99
, pp.
27
46
.10.1016/j.jmbbm.2019.07.008
14.
Sokolis
,
D. P.
,
2019
, “
Regional Distribution of Layer-Specific Circumferential Residual Deformations and Opening Angles in the Porcine Aorta
,”
J. Biomech.
,
96
, p.
109335
.10.1016/j.jbiomech.2019.109335
15.
Sassani
,
S. G.
,
Kakisis
,
J.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2015
, “
Layer-Dependent Wall Properties of Abdominal Aortic Aneurysms: Experimental Study and Material Characterization
,”
J. Mech. Behav. Biomed. Mater.
,
49
, pp.
141
161
.10.1016/j.jmbbm.2015.04.027
16.
Wang
,
R.
, and
Gleason
,
R. L.
,
2010
, “
A Mechanical Analysis of Conduit Arteries Accounting for Longitudinal Residual Strains
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1377
1387
.10.1007/s10439-010-9916-6
17.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stress in Arteries
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.10.1115/1.3138600
18.
Sokolis
,
D. P.
,
Bompas
,
A.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2020
, “
Variation of Axial Residual Strains Along the Course and Circumference of Human Aorta Considering Age and Gender
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021003
.10.1115/1.4043877
19.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1989
, “
Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
,
65
(
5
), pp.
1340
1349
.10.1161/01.RES.65.5.1340
20.
Sokolis
,
D. P.
,
2020
, “
Time-Course of Axial Residual Strain Remodeling and Layer-Specific Thickening During Aging Along the Porcine Aorta
,”
J. Biomech.
,
112
, p.
110065
.10.1016/j.jbiomech.2020.110065
21.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Modelling the Layer-Specific Three-Dimensional Residual Stresses in Arteries, With an Application to the Human Aorta
,”
J. R. Soc. Interface.
,
7
(
46
), pp.
787
799
.10.1098/rsif.2009.0357
22.
Huo
,
Y.
,
Zhao
,
X.
,
Cheng
,
Y.
,
Lu
,
X.
, and
Kassab
,
G. S.
,
2013
, “
Two Layer Model of Coronary Artery Vasoactivity
,”
J. Appl. Physiol.
,
114
(
10
), pp.
1451
1459
.10.1152/japplphysiol.01237.2012
23.
Ren
,
J.
, and
Zheng
,
X.
,
2016
, “
Effects of Three Dimensional Residual Stresses on the Mechanical Properties of Arterial Wall
,”
J. Theor. Biol.
,
393
, pp.
118
126
.10.1016/j.jtbi.2015.12.015
24.
Sigaeva
,
T.
,
Sommer
,
G.
,
Holzapfel
,
G. A.
, and
Di Martino
,
E. S.
,
2019
, “
Anisotropic Residual Stresses in Arteries
,”
J. R. Soc. Interface
,
16
(
151
), p.
20190029
.10.1098/rsif.2019.0029
25.
Sigaeva
,
T.
,
Destrade
,
M.
, and
Di Martino
,
E. S.
,
2019
, “
Multi-Sector Approximation Method for Arteries: The Residual Stresses of Circumferential Rings With Non-Trivial Openings
,”
J. R. Soc. Interface.
,
16
(
156
), p.
20190023
.10.1098/rsif.2019.0023
26.
Wang
,
R.
, and
Gleason
,
R. L.
,
2014
, “
Residual Shear Deformations in the Coronary Artery
,”
ASME J. Biomech. Eng.
,
136
(
6
), p.
061004
.10.1115/1.4027331
27.
Liu
,
M.
,
Liang
,
L.
,
Liu
,
H.
,
Zhang
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2019
, “
On the Computation of In Vivo Transmural Mean Stress of Patient-Specific Aortic Wall
,”
Biomech. Model. Mechanobiol.
,
18
(
2
), pp.
387
398
.10.1007/s10237-018-1089-5
You do not currently have access to this content.